Skip to Content
Merck
  • Design and characterization of bi-soft segmented polyurethane microparticles for biomedical application.

Design and characterization of bi-soft segmented polyurethane microparticles for biomedical application.

Colloids and surfaces. B, Biointerfaces (2011-08-09)
Elisa Campos, Rosemeyre Cordeiro, Ana Cristina Santos, Cláudia Matos, M H Gil
ABSTRACT

Bi-soft segmented poly(ester urethane urea) microparticles were prepared and characterized aiming a biomedical application. Two different formulations were developed, using poly(propylene glycol), tolylene 2,4-diisocyanate terminated pre-polymer (TDI) and poly(propylene oxide)-based tri-isocyanated terminated pre-polymer (TI). A second soft segment was included due to poly(ɛ-caprolactone) diol (PCL). Infrared spectroscopy, used to study the polymeric structure, namely its H-bonding properties, revealed a slightly higher degree of phase separation in TDI-microparticles. TI-microparticles presented slower rate of hydrolytic degradation, and, accordingly, fairly low toxic effect against macrophages. These new formulations are good candidates as non-biodegradable biomedical systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polypropylene glycol, P 400
Sigma-Aldrich
Polypropylene glycol, P 2,000
Sigma-Aldrich
Poly(propylene glycol), average Mn ~425
Sigma-Aldrich
Poly(propylene glycol), average Mn ~725
Sigma-Aldrich
Poly(propylene glycol), average Mn ~1,000
Sigma-Aldrich
Poly(propylene glycol), average Mn ~4,000
Sigma-Aldrich
Poly(propylene glycol), average Mn ~2,700
Sigma-Aldrich
Poly(propylene glycol), average Mn ~2,000