Skip to Content
Merck
All Photos(2)

Key Documents

GF73529051

Silicon

sheet, 52x52mm, thickness 1.0mm, polycrystalline, 99.999%

Synonym(s):

Silicon, SI003121

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si
CAS Number:
Molecular Weight:
28.09
MDL number:
UNSPSC Code:
12141911
PubChem Substance ID:
NACRES:
NA.23

Assay

99.999%

form

foil

manufacturer/tradename

Goodfellow 735-290-51

bp

2355 °C (lit.)

mp

1410 °C (lit.)

density

2.33 g/mL at 25 °C (lit.)

SMILES string

[Si]

InChI

1S/Si

InChI key

XUIMIQQOPSSXEZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Keith R Martin
Metal ions in life sciences, 13, 451-473 (2014-01-29)
Silicon is the second most abundant element in nature behind oxygen. As a metalloid, silicon has been used in many industrial applications including use as an additive in the food and beverage industry. As a result, humans come into contact
Emil Rudobeck et al.
Radiation research, 181(4), 407-415 (2014-03-15)
An unavoidable complication of space travel is exposure to radiation consisting of high-energy charged particles (HZE), such as Fe and Si nuclei. HZE radiation can affect neuronal functions at the level of the synapse or neuronal soma without inducing significant
Yanli Wang et al.
Advanced materials (Deerfield Beach, Fla.), 25(37), 5177-5195 (2013-07-06)
Semiconducting silicon nanowires (SiNWs) represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, structure, morphology, doping, and assembly
Yang Gao et al.
Journal of nanoscience and nanotechnology, 14(6), 4469-4474 (2014-04-18)
We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar
Dean G Johnson et al.
Advances in chronic kidney disease, 20(6), 508-515 (2013-11-12)
The development of wearable or implantable technologies that replace center-based hemodialysis (HD) hold promise to improve outcomes and quality of life for patients with ESRD. A prerequisite for these technologies is the development of highly efficient membranes that can achieve

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service