913812
2-(Azidomethyl)nicotinic acid imidazolide
≥95%
Synonym(s):
2-(Azidomethyl)-3-(1H-imidazole-1-carbonyl)pyridine, NAI-N3, RNA SHAPE probe, icSHAPE reagent
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
Application
2-(Azidomethyl)nicotinic acid imidazolide (NAI-N3) is an RNA icSHAPE probe for live-cell RNA structure profiling across the genome. icSHAPE -- or in vivo click selective 2′-hydroxyl acylation and profiling experiment -- uses NAI-N3 in a chemoaffinity method to probe RNA structure. NAI-N3 is an azido version of the cell-permeable SHAPE reagent 2-methylnicotinic acid imidazolide (NAI) that permits the tagging of NAI-N3-modified RNA with a biotin moiety for subsequent capture via streptavidin. Not only do such strategies further the understanding of RNA structure in living cells but also provide a tool for identifying regions that may be susceptible to therapeutic targeting. Recently, the azidomethylnicotinyl (AMN) group of NAI-N3 was demonstrated to block the function of gRNA and CRISPR systems, which could be reactivated by removing the AMN groups with Staudinger reduction (DPBM phosphine), overall providing a means to control nucleic acid cleavage and gene editing in live cells.
Other Notes
Signal Word
Danger
Hazard Statements
Precautionary Statements
Hazard Classifications
Eye Irrit. 2 - Self-react. C - Skin Irrit. 2
Storage Class Code
5.2 - Organic peroxides and self-reacting hazardous materials
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Nature communications, 11(1), 91-91 (2020-01-05)
Prokaryotes use repetitive genomic elements termed CRISPR (clustered regularly interspaced short palindromic repeats) to destroy invading genetic molecules. Although CRISPR systems have been widely used in DNA and RNA technology, certain adverse effects do occur. For example, constitutively active CRISPR
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service