Skip to Content
Merck
  • Stopped-Flow Enantioselective HPLC-CD Analysis and TD-DFT Stereochemical Characterization of Methyl Trans-3-(3,4-Dimethoxyphenyl)Glycidate.

Stopped-Flow Enantioselective HPLC-CD Analysis and TD-DFT Stereochemical Characterization of Methyl Trans-3-(3,4-Dimethoxyphenyl)Glycidate.

Chirality (2015-10-09)
Daniele Tedesco, Edoardo Fabini, Vakhtang Barbakadze, Maia Merlani, Riccardo Zanasi, Bezhan Chankvetadze, Carlo Bertucci
ABSTRACT

Caffeic acid-derived polyethers are a class of natural products isolated from the root extracts of comfrey and bugloss, which are endowed with intriguing pharmacological properties as anticancer agents. The synthesis of new polyether derivatives is achieved through ring-opening polymerization of chiral 2,3-disubstituted oxiranes, whose absolute configurations define the overall stereochemistry of the produced polymer. The absolute stereochemistry of one of these building blocks, methyl trans-3-(3,4-dimethoxy-phenyl)glycidate (3), was therefore characterized by the combination of enantioselective high-performance liquid chromatography (HPLC), electronic circular dichroism (ECD) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. Initial efforts aiming at the isolation of enantiomers by means of a standard preparative HPLC protocol followed by offline ECD analysis failed due to unexpected degradation of the samples after collection. The stopped-flow HPLC-CD approach, by which the ECD spectra of enantiomers are measured online with the HPLC system, was applied to overcome this issue and allowed a fast, reliable, and chemical-saving analysis, while avoiding the risks of sample degradation during the collection and processing of enantiomeric fractions. Subsequent TD-DFT calculations identified ( as the first eluted enantiomeric fraction on the Lux Cellulose-2 column, therefore achieving a full stereochemical characterization of the chiral oxirane under investigation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methyl chloroacetate, 99%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Hexane, suitable for HPLC
Sigma-Aldrich
Hexane, JIS special grade, ≥96.0%
Sigma-Aldrich
2-Propanol, suitable for HPLC
Sigma-Aldrich
Hexane, for residue analysis, JIS 5000
Sigma-Aldrich
2-Propanol, JIS special grade, ≥99.5%
Sigma-Aldrich
Hexane, ≥96.0%, suitable for residual phthalate analysis
Sigma-Aldrich
Hexane, SAJ first grade, ≥95.0%
Sigma-Aldrich
2-Propanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Hexane, JIS 1000, ≥96.0%, for residue analysis
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Hexane, JIS 300, ≥96.0%, for residue analysis
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Veratraldehyde, ≥98%, FG
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
2-Propanol, 99.5%, HPLC grade
Sigma-Aldrich
3,4-Dimethoxybenzaldehyde, 99%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)