Skip to Content
Merck
All Photos(3)

Key Documents

20249

Sigma-Aldrich

tert-Butyl methyl ether

puriss., dried over molecular sieve (H2O ≤0.01%), ≥99.5% (GC)

Synonym(s):

MTBE, Methyl tert-butyl ether

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)3COCH3
CAS Number:
Molecular Weight:
88.15
Beilstein:
1730942
EC Number:
MDL number:
UNSPSC Code:
12190000
PubChem Substance ID:

vapor density

3.1 (vs air)

grade

puriss.

Assay

≥99.5% (GC)

autoignition temp.

705 °F

quality

dried over molecular sieve (H2O ≤0.01%)

expl. lim.

15.1 %

impurities

≤0.01% water

refractive index

n20/D 1.369 (lit.)
n20/D 1.369

bp

55-56 °C (lit.)

density

0.74 g/mL at 25 °C (lit.)

SMILES string

COC(C)(C)C

InChI

1S/C5H12O/c1-5(2,3)6-4/h1-4H3

InChI key

BZLVMXJERCGZMT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Flam. Liq. 2 - Skin Irrit. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

-18.4 °F - closed cup

Flash Point(C)

-28 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

J R Hanson et al.
Applied and environmental microbiology, 65(11), 4788-4792 (1999-11-05)
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE
Kun-Chang Huang et al.
Chemosphere, 49(4), 413-420 (2002-10-09)
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate
R J Steffan et al.
Applied and environmental microbiology, 63(11), 4216-4222 (1997-11-15)
Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after
Sarah K Abbott et al.
Lipids, 48(3), 307-318 (2013-01-29)
We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads.
Torsten C Schmidt et al.
Journal of contaminant hydrology, 70(3-4), 173-203 (2004-05-12)
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service