Drug metabolism and disposition: the biological fate of chemicals, 28(4), 467-474 (2000-03-22)
The fatal drug-drug interaction between sorivudine, an antiviral drug, and 5-fluorouracil (5-FU) has been shown to be caused by a mechanism-based inhibition. In this interaction, sorivudine is converted by gut flora to (E)-5-(2-bromovinyl)uracil (BVU), which is metabolically activated by dihydropyrimidine
Clinical pharmacology and therapeutics, 61(5), 563-573 (1997-05-01)
Bromovinyl-uracil (BVU) is the principal metabolite of sorivudine, a potent anti-zoster nucleoside. BVU binds to, and irreversibly inhibits, the enzyme dihydropyrimidine dehydrogenase (DPD). The objective of this study was to assess the time course of recovery of DPD activity after
Journal of medicinal chemistry, 24(6), 759-760 (1981-06-01)
(Z)-5-(2-Bromovinyl)uracil was obtained by photoisomerization of the E. isomer. Similarly, (E)-5-(2-bromovinyl)-2'-deoxyuridine gave the required Z isomer. (Z)-5-(2-Bromovinyl)-2'-deoxyuridine is much less active against herpes simplex virus type 1 (HSV-1) and somewhat less active against herpes simplex virus type 2 than is
Sorivudine, 1-beta-D-arabinofuranosyl-5-(E)-(2-bromovinyl)uracil, is a potent antiviral agent against varicella-zoster virus and herpes simplex virus type 1. However, sorivudine should not be used in combination with anticancer drugs such as 5-fluorouracil (5-FU) because (E)-5-(2-bromovinyl)uracil (BVU), a metabolite of sorivudine, inhibits the
The Journal of pharmacology and experimental therapeutics, 287(2), 791-799 (1998-11-10)
A toxicokinetic study was performed using rats to investigate the possible mechanism of 18 acute deaths in Japanese patients with cancer and herpes zoster by interactions of the new oral antiviral drug, sorivudine (SRV), with one of the oral 5-fluorouracil
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.