Skip to Content
Merck
  • Visual detection of Hg2+ based on Hg(2+)-xanthine complex preventing aggregation of gold nanoparticles.

Visual detection of Hg2+ based on Hg(2+)-xanthine complex preventing aggregation of gold nanoparticles.

Journal of nanoscience and nanotechnology (2014-04-18)
Wen Dan Pu, Hua Wen Zhao, Cheng Zhi Huang, Li Ping Wu, Dan Xu
ABSTRACT

Xanthine, which can specifically bind with mercury ion (Hg2+) to form xanthine-Hg(2+)-xanthine complex, was used as Hg2+ binding molecule in this paper. In the absence of Hg2+, imide group of xanthine easily adsorbs onto the surface of gold nanoparticles (AuNPs) and induces aggregation of AuNPs, resulting in a blue color. In the presence of Hg2+, however, the selective binding of xanthine with Hg2+ prevents the AuNPs against xanthine induced aggregation, resulting in a visible color change from blue to red depend on the concentration of Hg2+. Therefore, taking advantage of this phenomenon, a simple, cost-effective and rapid method can be established for Hg2+ visual detection. This method allows the detection of Hg2+ in the range of 0.075-4.0 microM with a detection limit (3sigma/slope) of 15 nM, and exhibits a high selectivity toward Hg2+ over other metal ions. Particularly, as low as 0.5 microM Hg2+ can be easily detected by the naked eye without using any complicated or expensive instruments.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Sigma-Aldrich
Gold, rod, diam. 3.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.99% trace metals basis
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, microfoil, disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 2m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, insulated wire, 0.5m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, tube, 100mm, outside diameter 10.0mm, inside diameter 9.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, rod, 10mm, diameter 6.0mm, as drawn, 99.95%
Gold, insulated wire, 5m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyester insulation, 99.99%
Gold, insulated wire, 0.5m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, tube, 100mm, outside diameter 1.0mm, inside diameter 0.5mm, wall thickness 0.25mm, as drawn, 99.95%
Gold, microfoil, disks, 10mm, thinness 0.05μm, specific density 101.3μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, rod, 6mm, diameter 6.0mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 1.60mm, inside diameter 0.6mm, wall thickness 0.5mm, as drawn, 99.95%
Gold, rod, 10mm, diameter 4.0mm, as drawn, 99.95%
Gold, insulated wire, 0.1m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microleaf disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, removable support, 99.99+%
Gold, rod, 25mm, diameter 3.0mm, as drawn, 99.95%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyester insulation, 99.99%