Gold (Au) is a yellow noble metal celebrated for its lustrous appearance and exceptional resistance to corrosion. Our high-purity gold is available in wire form with a diameter of 0.5 mm. Gold wires are widely utilized in the electronics and semiconductor industries for interconnecting integrated circuits, thanks to their outstanding conductivity and corrosion resistance. In the field of nanotechnology, gold wires are investigated for their unique properties, including cold welding and remarkable conducting capabilities, which make them ideal for nanoscale electronic applications. Additionally, gold-coated wires offer enhanced durability and oxidation resistance, making them suitable for demanding environments in aerospace and electronics. Overall, gold wires are integral to material science, particularly in advanced electronics and nanotechnology applications, even as research continues to explore cost-effective alternatives.
Journal of nanoscience and nanotechnology, 13(7), 5080-5087 (2013-08-02)
Multifunctional phosphine based ligands, 1,1,1-tris(diphenylphosphinomethyl)ethane [CH3C(CH2 PPh2)3][P3] and 1,1,1-tris(diphenylphosphinomethyl)ethane trisulphide [CH3C(CH2P(S)Ph2)3][P3S3] have been introduced to stabilize Au(o)-nanoparticles having small core diameter and narrow size distribution. The Au(o)-nanoparticles were synthesized by the reduction of HAuCl4 precursor with NaBH4 in the presence
Journal of nanoscience and nanotechnology, 13(6), 4437-4445 (2013-07-19)
Gold nanorods (Au NRs) that absorb near-infrared (NIR) light have great potential in the field of nanomedicine. Photothermal therapy (PTT), a very attractive cancer therapy in nanomedicine, combines nanomaterials and light. The aim of this study was to elucidate the
Midas touch in cardiology.
Marianna Karamanou et al.
European heart journal, 34(20), 1463-1464 (2013-07-11)
Journal of nanoscience and nanotechnology, 13(5), 3470-3473 (2013-07-19)
Au nanoparticles and poly(3-hexylthiophene) (P3HT) composite films were prepared by electrodeposition of Au nanoparticles using pulse-current electrodeposition followed by the spin coating of P3HT and their enhanced electrochromic coloration was investigated. A relatively uniformed Au nanoparticle was obtained by the
Journal of nanoscience and nanotechnology, 13(5), 3711-3714 (2013-07-19)
The crystallization of Au/glass ultrathin films for surface plasmon resonance (SPR) biosensor has been studied using synchrotron X-ray scattering and field emission scanning electron microscope. In films thinner than 30 nm, crystallized Au grains with [111] preferred orientation were formed
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.