Direkt zum Inhalt
Merck
HomeProtein ExpressionCytokine Receptors (Hematopoetin Receptor Family)

Cytokine Receptors (Hematopoetin Receptor Family)

A broad array of molecules can be functionally termed cytokines. These secreted or membrane-bound regulatory factors control myriad developmental, metabolic and host defense processes in cells that display the correct assortment of surface receptors. Cytokine ligands and cellular receptors then form specific binding complexes that trigger intracellular signaling cascades to recast the fate of the cell. The rules of engagement between cytokines and receptors are highly structural in nature; cytokine and receptor families have distinct domain architectures that are employed in specific and highly conserved three-dimensional interactions.

The largest and most divergent family of cytokines are the hematopoietic factors that comprise around 50 distinct lymphokines, growth hormones, hemopoietins, neuropoietins and interleukins. In spite of minimal sequence homology, these hematopoietic cytokines have a singular four-α-helix protein fold that has been evolutionarily honed to interact with approximately 45 receptors that sport a distinctive pair of fibronectin-type-3 (Fn3) modules. As a number of receptor crystal structures reveal, these Fn3 modules fold as β-sheet sandwiches (reminiscent of Ig domains) with a characteristic “bent” hinge that forms a loop-rich binding site for their helical cytokine ligands. This conserved protein-protein interaction mode is capable of granting both high specificity or perplexing promiscuity to ligand binding, since both dedicated (or ‘private’) and shared receptors are found in the hematopoietic family. The latter type includes critical molecules such as Rγc (a common chain in IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 receptor complexes), Rβc (likewise for IL-3, IL5 and GMCSF), gp130 for the IL-6-like cytokine clan, and IL-10R2 for the IL-10-like factors.

Though hematopoietic cytokines all share a common fold topology, sequence divergence has given rise to differences in the length and packing of their core α-helices, variations in loop geometry and extracore adornments such as short β-strands or α-helices nestled against the α-helical bundle core. These divergent architectural themes underlie the current classification of hematopoietic cytokines into three types, Short-chain (like the aforementioned ligands of Rγc and Rβc), Long-chain (comprising the IL-6-like cytokines, growth hormones, EPO and TPO) and Interferon-like (IFNs-α/β/γ and the IL-10-like cytokines). This structural division of cytokine ligands mirrors an evolutionary split of their respective receptors into Class 1 (or classically hematopoietic) Receptors for either Short- or Long-chain cytokines, and Class 2 (or Interferon-like) Receptors for Interferon-like cytokines.

Structural investigations have uncovered a greater complexity of ligand/receptor interactions than was first revealed in the paradigmatic framework of the growth hormone (GH) receptor complex where the cytokine was cradled between two receptor subunits that formed a face-to-face dimer. The majority of Class 1 and 2 hematopoietic cytokines utilize this scheme, driving association of a receptor homodimer (like GH, PRL, EPO and TPO) or heterodimer (all of the Short-chain and Interferon-like factors) to create an active signaling complex. The IL-6-like cytokines of the Class 1, Long-chain group, including IL-6, IL-11, IL-12, IL-23, IL-27, IL-31, CLC, CNTF, CT-1, GCSF, Leptin, LIF and OSM, have evolved an additional (non-GH-like) receptor-binding epitope that captures an N-terminal Ig domain of their second critical hematopoietic receptor signaling chain. This more elaborate choreography of gp130-like receptors assembling around IL-6-like cytokines is reflected in the subunit composition of the particular receptor complexes (see Table). However, exceptions exist in the form of three membrane-tethered Short-chain cytokines, namely FLT3L, MCSF and SCF, that are obligate dimers that appear to have escaped the confines of the hematopoietic cytokine receptor family and bind to three tyrosine-kinase receptors of the PDGFR class, FLT-3, FMS and KIT, respectively.

The hematopoietic cytokine/receptor system, which funnels its signals through conserved JAK/STAT intracellular pathways, is arguably the key regulator of the developmental fates and functional roles of blood cell types. As such, this system is critical in helping marshall and shape effective immune responses to pathogen attack. Dysregulation of this molecular network by mutation or pathogen deception, can contribute to a variety of human immuno-deficiencies or cancers. Nevertheless, efforts are underway to develop small molecule drugs that either augment or suppress hematopoietic receptor signaling by targeting critical points of interaction between cytokines and their receptors, or receptors and intracellular effectors.

The Tables below contain accepted modulators and additional information.

 

Class 1 (Short Chain) Hematopoietin Receptor Family

Receptor ForaIL-2IL-3IL-4
IL-5IL-7
Currently Accepted NameIL-2 ReceptorIL-3 ReceptorIL-4 ReceptorIL-5 ReceptorIL-7 Receptor
Alternative NameTCGF Multi-CSF
MCGF
BCGF
BSF-1
EDFPreBCGF 
Subunit CompositionIL2Rα (I0779)/
IL2Rβ (I0904)/
Rγc (I1029)
IL3Rα/
Rβc
IL4R/
Rγc
IL5Rα/
Rβc
IL7R2/
Rγc
Selective Agonistsa,bIL-2 (I2644I7908 (h), I0523 (m))
IL-4 (I4269 (h), I1020 (m), I3650 (r))
IL-7 (I5896 (h), I4892 (m))
IL-15 (I8648)
IL-3 (I1646I7389 (h), I4144 (m))IL-4 (I4269 (h), I1020 (m), I3650 (r))IL-5 (I5273 (h), I1145 (m))IL-7 (I5896 (h), I4892 (m))
Signal Transduction MechanismsJAK/STAT
lyn
lck
JAK/STATJAK/STAT
IRS-1
JAK/STAT
4PS
lyn
JAK/STAT
Radioligands of Choice[125I]-IL-2[125I]-IL-3[125I]-IL-4[125I]-IL-5[125I]-IL-7
Tissue ExpressionThymusActivated T-cells
Mast cells
Eosinophils
Th2-cells
NK-T cells
Mast cells
T-cells
Mast cells
Bone marrow stromal cells
T-cells
Physiological FunctionHematopoiesis
Proliferation of T- and B-cells
Growth/proliferation of immune cellsProliferation/development of Th2 cells
B-cell proliferation
Activation of monocytes-macrophages
Growth/differentiation of B-cells and eosinophilsEarly B- and T-cell development
Disease RelevanceTherapeutic for many cancersMyeloid leukemiasAllergy
Asthma
Allergy
Asthma
Psoriasis
Receptor ForaIL-9IL-13IL-15IL-21
Currently
Accepted
Name
IL-9 ReceptorIL-13 ReceptorIL-15 ReceptorIL-21 Receptor
Alternative
Name
    
Subunit
Composition
IL9R/
Rγc
IL13Rα1/
IL4Rα
IL13Rα2=decoy
IL15Rα/
IL2Rβ/
Rγc
IL21R/
Rγc
Selective
Agonistsa,b
IL-9 (I3394 (h), I3269 (m))IL-13 (I1771 (h), I1896 (m))
IL-7 (I5896 (h), I4892 (m))
IL-15 (I8648)
IL-15 (I8648)
IL-2 (I2644I7908)
IL-4 (I4269)
IL-7 (I5896)
IL-21
Signal
Transduction
Mechanisms
JAK/STATJAK/STAT
lyn
lck
JAK/STATJAK/STAT
Radioligands of
Choice
[125I]-IL-9[125I]-IL-13[125I]-IL-15[125I]-IL-21
Tissue
Expression
Th2-cellsActivated Th2 cellsPlacenta
Skeletal muscle
Activated CD4+ T-cells
Physiological
Function
Eosinophil differentiation
Mast cell proliferation
B-cell maturation/differentiation
Downregulates macrophages
T cell stimulationNK cell proliferation/maturation
B- and T-cell function
Inhibition of dendritic cells
Disease
Relevance
AsthmaAsthmaArthritisPsoriasis
Receptor ForaGMCSFTSLPFLT3LMCSFSCF
Currently
Accepted
Name
GMCSF ReceptorTSLP ReceptorFLT3/FLK2 RTKc-FMS RTKc-KIT RTK
Alternative
Name
CSF2  CSF-1MGF
Steel
Subunit
Composition
GMCSFRα/
Rβc
TSLPR/
IL7Rα
(FLT3)2(FMS)2(KIT)2
Selective
Agonistsa,b
GMCSF (G5035)TSLP
(IL-7)
Not KnownNot Known
Not Known
Signal
Transduction
Mechanisms
JAK/STATJAK/STATTyrosine KinaseTyrosine KinaseTyrosine Kinase
Radioligands of
Choice
[125I]-GMCSF[125I]-TSLP[125I]-FLT3L[125I]-MCSF[125I]-SCF
Tissue
Expression
Immune cellsSpleen
Thymus
Kidney
Lung
Bone marrow
Immune cellsImmune cellsImmune cells
Physiological
Function
Hemopoietic progenitor growth/differentiationMyeloid stimulation
Dendritic cell and B-cell development
Stem cell growth factorStem cell growth factor
Macrophage development
Immune defense
Bone metabolism
Stem cell growth factor
Mast cell development
Disease
Relevance
Therapeutic myeloid reconstitutionNot KnownLeukemiaLeukemiaMast cell leukemia
Piebaldism
Gastrointestinal stromal tumor

Class 1 (Long Chain) Hematopoietin Receptor Family

Receptor ForEPOTPOGH*PRLCLCCNTF
Currently Accepted NameEPO Receptor (E0643)TPO ReceptorGH ReceptorPRL ReceptorCLF and CNTF ReceptorCNTF Receptor
Alternative Name MegCSF
MGDF
MPL ligand
SomatotropinPlacental lactogen
BSF3
NNT1
 
Subunit Composition(EPOR)2(TPOR)2(GHR)2(PRLR)2CLF/NR6 for secretion
CNTFRα/gp130/LIFR
CNTFRα/gp130/LIFR
Selective Agonistsa,bEPO (E5627)TPO (T1568)GH/CS
PRL (L4021)
PRL (L4021)
GH/CS
CLC
CNTF (C3710)
LIF (L5283)
OSM (O9635)
CT-1
IL-6 (I1395I3268)
IL-11 (I2406)
CNTF (C3710)
Signal Transduction MechanismsJAK/STATJAK/STATJAK/STATJAK/STATJAK/STATJAK/STAT
Radioligands of Choice[125I]-EPO[125I]-TPO[125I]-GH[125I]-PRL[125I]-CLC
[125I]-CNTF
[125I]-LIF
[125I]-LIF
[125I]-OSM
[125I]-CNTF
[125I]-LIF
[125I]-OSM
Tissue ExpressionKidney
Liver
LiverPituitary glandPlacentaLymph nodes
Spleen
PBLs
Bone marrow
Fetal liver
Central nervous sytem
Physiological FunctionRegulator of erythropoiesisRegulator of thrombopoiesis
Megakaryocyte development
Platelets
Growth control
Differentiation/proliferation of myoblasts
Promotes lactation by mammary glandB-cell stimulation
Neuronal regeneration
Neuronal regeneration
Disease RelevanceTherapeutic for treatment of anemiaTherapeutic for platelet reconstitution
Thrombocythemia
DwarfismNot Known
Not KnownTreatment for obesity
Amyotrophic lateral sclerosis
Receptor ForCT-1GCSFLeptinLIFOSMIL-6
Currently Accepted NameCNTF ReceptorGCSF ReceptorLeptin ReceptorLIF ReceptorLIF Receptor and OSM ReceptorIL-6 Receptor (I5771) 
Alternative Name CSF3
pluripoietin
Obese
OB
HILDA IFN-β2
BSF2
Subunit CompositionCNTFRα/gp130/LIFR(GCSFR)2(LepR)2gp130/LIFRgp130/LIFR
gp130/OSMR
IL6Rα/(gp130)2
Selective Agonistsa,bCT-1
LIF (L5283)
OSM (O9635)
CNTF (C3710)
IL-6 (I1395I3268)
IL-11 (I2406)
GCSF (G0407)Leptin (L4146)LIF (L5283)
OSM (O9635)
IL-6 (I1395)
CT
IL-11 (I2406)
CNTF (C3710)
LIF (L5283)
OSM (O9635)
CT
IL-6 (I1395)
IL-11 (I2406)
CNTF (C3710)
IL-6 (I1395)
(OSM (O9635)
LIF (L5283)
IL-11 (I2406)
CNTF (C3710)
CT)
Signal Transduction MechanismsJAK/STATJAK/STAT
SH-PTPase
JAK/STATJAK/STATJAK/STATJAK/STAT
Radioligands of Choice[125]-CT-1
[125I]-LIF
[125I]-OSM
[125I]-GCSF[125I]-Leptin[125I]-LIF[125I]-LIF
[125I]-OSM
[125I]-IL-6
[125I]-OSM
Tissue ExpressionHeart
Skeletal muscle
Prostate
Liver
Immune cellsAdipocytes
Stem cells
Immune cellsActivated leukocytesImmune cells
Physiological FunctionCardiac myocte developmentRegulates granulocyte proliferation/maturationEarly hematopoiesis
Regulation of obesity and metabolism
Bone development
Hematopoietic, neuronal and endothelial cell developmentLiver development
Hematopoiesis regulation
Proinflammatory
Bone resorption control
Hematopoiesis regulation
Plasma cell development
Disease RelevanceNot Known
Therapeutic against neutropeniaObesityArthritisNot Known
Therapeutic for cancers
Receptor ForIL-11IL-12p35IL-23p19IL-27p28IL-31
Currently Accepted NameIL-11 ReceptorIL-12 Receptor IL-23 ReceptorIL-27 ReceptorIL-31 Receptor
Alternative NameAGIFNKSF1
IL-12A
IL-23ATCCR
WSX-1
GLMRL
Subunit CompositionIL11R/gp130p40/IL12Rβ1/IL12Rβ2p40/IL12Rβ1/IL23REBI3/TCCR/gp130IL-31R/OSMR
Selective Agonistsa,bIL-11 (I2406)
(OSM (O9635)
CT
IL-6 (I1395)
LIF (L5283)
CNTF (C3710)
IL-12p35/p40 (I2276)IL-23p19/p40IL-27p28/EBI3IL-31
Signal Transduction MechanismsJAK/STATJAK/STATJAK/STATJAK/STATJAK/STAT
Radioligands of Choice[125I]-IL-11[125I]-IL-12p35/p40[125I]-IL-23p19/p40[125I]-IL-27p29/EBI3[125I]-IL-31
Tissue ExpressionStromal cellsMonocytes
T-cells
B-cells
Monocytes
Dendritic cells
T-cells
NK-cells
Monocytes
Dendritic cells
Activated Th2 cells
Physiological FunctionT-cell proliferation and regulation, stimulates platelet productionPromotes Th1 immune response
NK cell cytotoxicity
Pro-inflammatory
Promotes Th1 immune response
IFN-γ inducer
Proliferation of memory and naïve T-cells
Promotes Th1 immune response
Proliferation of naïve CD4+ T-cells
Immune response
Disease RelevanceTherapeutic for psoriasisChronic inflammatory diseasesChronic inflammationChronic inflammationEpithelial skin disorders
Asthma
Allergy

Cytokine Receptors - Class 2 Hematopoietin Receptor Family

Receptor For IFN-α/β**IFN-γIL-10IL-19IL-20
Currently Accepted NameIFN-α Receptor-2IFN-γ Receptor-1IL-10 Receptor-1IL-20 ReceptorIL-20 Receptor
Alternative Name  CSIF  
Subunit CompositionIFNαR2/IFNαR1IFNγR1/IFNsγR2(IL10R1)2/( IL10R2)2IL20R1/IL20R2IL20R1/IL20R2
IL22R1/IL20R2
Selective Agonists a,bIFN-α** (I4401, I4276)
IFN-β (I4151)
IFN-γ (I1520, I3265)IL-10 (I9276)IL-20
IL-24
IL-26
IL-20
IL-19
IL-22
IL-24
IL-26
Signal Transduction MechanismsJAK/STAT
PI3K
NFkB
MAPK
PRMT1
JAK/STAT
PI3K
MAPK
NFkB
JAK/STATJAK/STATJAK/STAT
Radioligands of Choice[125I]-IFN-α/β[125I]-IFN-γ[125I]-IL-10[125I]-IL-19[125I]-IL-20
Tissue ExpressionDendritic cellsTh1 cellsTh2 cells, B cellsMonocytes, B cellsImmune cells
Physiological FunctionImmune response against viral infection, antiviral, antiproliferativeImmune response, triggers cytokine releaseImmunosuppressive functions, blocking cytokine productionImmune responseImmune response
Disease RelevanceLupus, rheumatoid arthritis; treatment of Hepatitis-B and -C, multiple sclerosisChronic inflammatory diseaseAsthma, allergyChronic inflammatory skin disease (e.g. psoriasis)Psoriasis
Receptor For IL-22IL-24IL-26IL-28α/β***IL-29
Currently Accepted NameIL-22 ReceptorIL-22 ReceptorIL-20 ReceptorIL-28 ReceptorIL-28 Receptor
Alternative NameIL-TIFMDA7
FISP
AK155IFN-l2/l3IFN-l1
Subunit CompositionIL22R1/IL10R2
IL22bp=Decoy
IL22R1/IL20R2
IL20R1/IL20R2
IL20R1/IL10R2IL28R1/IL10R2IL28R1/IL10R2
Selective Agonists a,bIL-22
IL-20
IL-24
IL-19
IL-20
IL-26
IL-26
IL19
IL-20
IL-24
IL-28α/β
IL-29
IL-29
IL-28α/β
Signal Transduction MechanismsJAK/STATJAK/STATJAK/STATJAK/STATJAK/STAT
Radioligands of Choice[125I]-IL-22[125I]-IL-24[125I]-IL-26[125I]-IL-28α/β[125I]-IL-29
Tissue ExpressionT cells, mast cells, thymus, brainImmune cells, PBLs, melanocytesT-cells, monocytes, NK-cells, B-cellsT-cellsT-cells
Physiological FunctionImmune responseImmune response, apoptosis-inducing in tumor cellsImmune responseImmune response, antiviral, antiprolliferativeImmune response, antiviral, antiproliferative
Disease RelevanceAllergyMelanomaUpregulated in T-cells by Herpesvirus infection, stimulation of cytotoxic activity of immune cellsNot Known
Not Known

Footnotes

a) Product numbers refer to the human cytokine. For other species, please visit our website at www.sigmaaldrich.com and use our Product Search.

b) Agonists not in parentheses are primary agonists for the receptor.

* = GH and four closely related chorionic somatotropin homologs

** = IFNα,β,δ,ε,κ,τ,ω and limitin

*** = IL28α and IL28β are two closely related cytokines

Abbreviations

4PS: IL-4-induced phosphotyrosine substrate
AGIF: Adipogenesis inhibitory factor
BCGF: B cell growth factor
BSF: B cell stimulatory factor
CLC: Cardiotrophin like cytokine
CLF: Cytokine-like factor
CNTF: Ciliary neurotrophic factor
CS: Chorionic somatotropin
CSF: Colony stimulating factor
CSIF: Cytokine synthesis inhibitory factor) (CSIF).
CT: Cardiotrophin
EDF: Eosinophil differentiation factor
EPO: Erythropoietin
FISP: IL4 induced secreted protein
FLT-3: Fms-like tyrosine kinase 3
FLT3L: Fms-related tyrosine kinase 3 ligand)
FMS: formerly McDonough feline sarcoma viral (v-fms) oncogene homolog
GH: Growth Hormone
GHR: Growth hormone receptor
GMCSF: Granulocyte macrophage colony stimulating factor
GSCF: Granulocyte colony stimulating factor
IFN: Interferon
IL: Interleukin
IL-TIF: IL-10-related T-cell-derived inducible factor
IRS-1: Insulin receptor substrate-1
Jak: Janus kinase
KIT: V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
LIF: Leukemia inhibitory factor
Lck: Lymphocyte-specific protein tyrosine kinase
Lyn: V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
MCSF: Macrophage colony stimulating factor
MDA7: Melanoma differentiation-associated protein 7
MGDF: megakaryocyte growth and development factor
MGF: Mast cell growth factor
NKSF1: NK cell stimulatory factor chain 1
NNT1: Novel neurotrophin 1
OSM: Oncostatin M
PBLs: Peripheral blood leukocytes
PDGF: Platelet-derived growth factor
PRL: Prolactin
RTK: Protein tyrosine kinase
SCF: Stem cell growth factor
SH-PTPase: Src homology domain 2-containing protein tyrosine phosphatase
STAT: Signal transducer and activator of transcription
TCCR: Type I T-cell cytokine receptor
TPO: Thrombopoietin
TSLP: Thymic stromal lymphopoietin

References

1.
Arkin MR, Wells JA. 2004. Small-molecule inhibitors of protein?protein interactions: progressing towards the dream. Nat Rev Drug Discov. 3(4):301-317. https://doi.org/10.1038/nrd1343
2.
Atanasova M, Whitty A. 2012. Understanding cytokine and growth factor receptor activation mechanisms. Critical Reviews in Biochemistry and Molecular Biology. 47(6):502-530. https://doi.org/10.3109/10409238.2012.729561
3.
Banerjee M, Saxena M. 2012. Interleukin-1 (IL-1) family of cytokines: Role in Type 2 Diabetes. Clinica Chimica Acta. 413(15-16):1163-1170. https://doi.org/10.1016/j.cca.2012.03.021
4.
Boulanger MJ, Garcia K. 2004. Shared Cytokine Signaling Receptors: Structural Insights from the Gp130 System.107-146. https://doi.org/10.1016/s0065-3233(04)68004-1
5.
Boulay J, O'Shea JJ, Paul WE. 2003. Molecular Phylogeny within Type I Cytokines and Their Cognate Receptors. Immunity. 19(2):159-163. https://doi.org/10.1016/s1074-7613(03)00211-5
6.
Dranoff G. 2004. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 4(1):11-22. https://doi.org/10.1038/nrc1252
7.
Ebstein F, Kloetzel P, Krüger E, Seifert U. 2012. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell. Mol. Life Sci.. 69(15):2543-2558. https://doi.org/10.1007/s00018-012-0938-0
8.
Foster D, Parrish-Novak J, Fox B, Xu W. 2004. Cytokine?receptor pairing: accelerating discovery of cytokine function. Nat Rev Drug Discov. 3(2):160-170. https://doi.org/10.1038/nrd1305
9.
Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. 2008. The erythropoietin receptor in normal and cancer tissues. Critical Reviews in Oncology/Hematology. 67(1):39-61. https://doi.org/10.1016/j.critrevonc.2008.03.006
10.
Kang J, Der SD. 2004. Cytokine functions in the formative stages of a lymphocyte?s life. Current Opinion in Immunology. 16(2):180-190. https://doi.org/10.1016/j.coi.2004.02.002
11.
Khaled YS, Elkord E, Ammori BJ. 2012. Macrophage Inhibitory Cytokine-1: A review of its pleiotropic actions in cancer. CBM. 11(5):183-190. https://doi.org/10.3233/cbm-2012-00287
12.
Kovanen PE, Leonard WJ. 2004. Cytokines and immunodeficiency diseases: critical roles of the gammac-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 202(1):67-83. https://doi.org/10.1111/j.0105-2896.2004.00203.x
13.
Mocini D, Leone T, Tubaro M, Santini M, Penco M. 2007. Structure, Production and Function of Erythropoietin: Implications for Therapeutical Use in Cardiovascular Disease. CMC. 14(21):2278-2287. https://doi.org/10.2174/092986707781696627
14.
O'Shea JJ, Pesu M, Borie DC, Changelian PS. 2004. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov. 3(7):555-564. https://doi.org/10.1038/nrd1441
15.
Ozaki K, Leonard WJ. 2002. Cytokine and Cytokine Receptor Pleiotropy and Redundancy. J. Biol. Chem.. 277(33):29355-29358. https://doi.org/10.1074/jbc.r200003200
16.
Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. 2004. Interleukin-10andRelatedCytokines andReceptors. Annu. Rev. Immunol.. 22(1):929-979. https://doi.org/10.1146/annurev.immunol.22.012703.104622
17.
Picard C, Casanova J. 2004. Inherited disorders of cytokines. Current Opinion in Pediatrics. 16(6):648-658. https://doi.org/10.1097/01.mop.0000145919.92477.5f
18.
Ribatti D. 2012. Angiogenic activity of classical hematopoietic cytokines. Leukemia Research. 36(5):537-543. https://doi.org/10.1016/j.leukres.2012.02.003
19.
Sanganalmath SK, Abdel-Latif A, Bolli R, Xuan Y, Dawn B. 2011. Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Res Cardiol. 106(5):709-733. https://doi.org/10.1007/s00395-011-0183-y
20.
Szenajch J, Wcislo G, Jeong J, Szczylik C, Feldman L. 2010. The role of erythropoietin and its receptor in growth, survival and therapeutic response of human tumor cells. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1806(1):82-95. https://doi.org/10.1016/j.bbcan.2010.04.002
21.
Trinchieri G, Pflanz S, Kastelein RA. 2003. The IL-12 Family of Heterodimeric Cytokines. Immunity. 19(5):641-644. https://doi.org/10.1016/s1074-7613(03)00296-6
22.
Vignali DAA, Kuchroo VK. 2012. IL-12 family cytokines: immunological playmakers. Nat Immunol. 13(8):722-728. https://doi.org/10.1038/ni.2366
Melden Sie sich an, um fortzufahren.

Um weiterzulesen, melden Sie sich bitte an oder erstellen ein Konto.

Sie haben kein Konto?