Direkt zum Inhalt
Merck

PET imaging of Oatp-mediated hepatobiliary transport of [(11)C] rosuvastatin in the rat.

Molecular pharmaceutics (2014-06-25)
Jiake He, Yang Yu, Bhagwat Prasad, Jeanne Link, Robert S Miyaoka, Xijing Chen, Jashvant D Unadkat
ZUSAMMENFASSUNG

A novel positron emission tomography (PET) tracer, [(11)C]-rosuvastatin (RSV), was developed to dynamically and noninvasively measure hepatobiliary transport and tissue distribution of [(11)C]-RSV in rats. Male Sprague-Dawley rats were administered either an Oatp inhibitor, rifampin (RIF, 40 mg/kg iv bolus plus 1.85 mg/min/kg iv infusion, n = 3), or the corresponding vehicle (saline, n = 3) for at least 90 min. Then, while these infusions were ongoing, the animals received [(11)C]-rosuvastatin (∼1 mCi/30 s, iv infusion). After [(11)C]-RSV administration, the lower abdominal region of the rats was imaged for 90 min. Time-activity curves for liver, intestine, and kidney were obtained and corrected for vascular content prior to noncompartmental and compartmental (five-compartment model) analysis. The majority of the [(11)C]-RSV dose was distributed into the liver. In the presence of RIF, the area under the [(11)C]-RSV radioactivity blood concentration-time profile (AUC0-90 min) was increased by ∼3-fold. Relative to the control animals, RIF reduced the distribution of [(11)C]-RSV radioactivity into the liver and kidney (tissue AUC0-15 min/blood AUC0-15 min) by 54% and 73% respectively. Compartmental modeling showed that RIF decreased CLBL, CLLI, CLBK, and CLK0 but had no effect on CLLB, where B, L, I, K, and 0 represent blood, liver, intestine, kidney, and irreversible loss. [(11)C]-RSV can be used to dynamically and noninvasively quantify hepatobiliary transport and hepatic concentration of the drug, in the absence and presence of drug interactions, in rats and could be used for the same purpose in humans.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ammoniumformat, reagent grade, 97%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ammoniumformat, ≥99.995% trace metals basis
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Ammoniumformiat -Lösung, BioUltra, 10 M in H2O
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
USP
Methylalkohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Supelco
Diazepam -Lösung, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Diazepam
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ameisensäure, ≥95%, FCC, FG
Supelco
Ammoniumformat, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Acetonitril, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis