Direkt zum Inhalt
Merck
  • Immuno-proteomics: Development of a novel reagent for separating antibodies from their target proteins.

Immuno-proteomics: Development of a novel reagent for separating antibodies from their target proteins.

Biochimica et biophysica acta (2014-12-04)
Vinitha Ganesan, Brigitte Schmidt, Raghunandan Avula, Dagney Cooke, Taylor Maggiacomo, Lawton Tellin, Dana P Ascherman, Marcel P Bruchez, Jonathan Minden
ZUSAMMENFASSUNG

Immunoprecipitation (IP) is a widely used technique for identifying the binding partners of the target proteins of specific antibodies. Putative binding targets and their partners are usually in much lower amounts than the antibodies used to capture these target proteins. Thus antigen identification using proteomics following IP is often confounded by the presence of an overwhelming amount of interfering antibody protein. Even covalently linking antibodies to beads is susceptible to antibody leaching during IP. To circumvent this interference, we describe here a reagent, called Biotin-CDM that reversibly tags all potential target proteins in a cell lysate with biotin. The presence of biotin coupled to the target proteins allows for a secondary separation step in which antibodies are washed away from the reversibly biotinylated target proteins by binding them to an Avidin-coupled matrix. The captured target proteins are released from the Avidin matrix by reversing the Biotin-CDM link, thus releasing a pool of target proteins ready for further proteomic analysis compatible with 2D-electrophoresis. Here, we describe the synthesis and characterization of Biotin-CDM. We also demonstrate Biotin-CDM's use for immunoprecipitation of a known antigen, as well as its use for capturing an array of proteins targeted by the autoantibodies found in the serum a patient suffering from rheumatoid arthritis. The use of this reagent allows one to combine immunoprecipitation and 2D-Difference gel electrophoresis, overcoming the current limitations of Serological Proteome Analysis (SERPA) in discovering autoantigens. This article is part of a Special Issue entitled: Medical Proteomics.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
N,N-Dimethylformamid, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamid, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethylacetat, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
N-Hydroxysuccinimid, 98%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamid, ReagentPlus®, ≥99%
Sigma-Aldrich
N,N-Dimethylformamid, for molecular biology, ≥99%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
N,N-Dimethylformamid, biotech. grade, ≥99.9%
USP
Methylalkohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
N,N-Dimethylformamid, anhydrous, 99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
2,2′-(Ethylendioxy)diethylamin, 98%
Sigma-Aldrich
Methanol, anhydrous, 99.8%