Direkt zum Inhalt
Merck

Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

Environmental science & technology (2014-11-21)
Matthias Egger, Olivia Rasigraf, Célia J Sapart, Tom Jilbert, Mike S M Jetten, Thomas Röckmann, Carina van der Veen, Narcisa Bândă, Boran Kartal, Katharina F Ettwig, Caroline P Slomp
ZUSAMMENFASSUNG

Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Schwefel, powder, 99.98% trace metals basis
Sigma-Aldrich
Aktivkohle-Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Schwefel, 99.998% trace metals basis
Sigma-Aldrich
Aktivkohle-Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Deuterium, 99.8 atom % D
Sigma-Aldrich
Kohlenstoff-Nanofasern, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Kohlenstoff, mesoporös, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Kohlenstoff-Nanofasern, pyrolitically stripped, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Aktivkohle-Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Deuterium, 99.96 atom % D
Sigma-Aldrich
Aktivkohle-Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Aktivkohle-Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Kohlenstoff, mesoporös, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Deuterium, 99.9 atom % D
Sigma-Aldrich
Kohlenstoff, mesoporös, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Kohlenstoff, mesoporös
Sigma-Aldrich
Schwefel, flakes, ≥99.99% trace metals basis
Sigma-Aldrich
Kohlenstoff, mesoporös, hydrophilic pore surface
Sigma-Aldrich
Deuteriumhydrid, extent of labeling: 96 mol% DH, 98 atom % D
Supelco
Schwefel, PESTANAL®, analytical standard
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Supelco
Aktivkohle-Norit®, Norit® RBAA-3, rod
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon
Sigma-Aldrich
Methan-12C, 99.9 atom % 12C
Carbon - Vitreous, rod, 5mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, 0.05g.cmué, porosity 96.5%, 24 pores/cm
Carbon - Vitreous, rod, 100mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, tube, 100mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 1.0mm, glassy carbon