Direkt zum Inhalt
Merck
  • A new SiF-Dipropargyl glycerol scaffold as a versatile prosthetic group to design dimeric radioligands: synthesis of the [(18) F]BMPPSiF tracer to image serotonin receptors.

A new SiF-Dipropargyl glycerol scaffold as a versatile prosthetic group to design dimeric radioligands: synthesis of the [(18) F]BMPPSiF tracer to image serotonin receptors.

ChemMedChem (2014-01-01)
Puja Panwar Hazari, Jurgen Schulz, Delphine Vimont, Nidhi Chadha, Michele Allard, Magali Szlosek-Pinaud, Eric Fouquet, Anil Kumar Mishra
ZUSAMMENFASSUNG

A novel SiX-dipropargyl glycerol scaffold (X: H, F, or (18) F) was developed as a versatile prosthetic group that provides technical advantages for the preparation of dimeric radioligands based on silicon fluoride acceptor pre- or post-labeling with fluorine-18. Rapid conjugation with the prosthetic group takes place in microwave-assisted click conjugation under mild conditions. Thus, a bivalent homodimeric SiX-dipropargyl glycerol derivatized radioligand, [(18) F]BMPPSiF, with enhanced affinity was developed by using click conjugation. High uptake of the radioligand was demonstrated in 5-HT1A receptor-rich regions in the brain with positron emission tomography. Molecular docking studies (rigid protein-flexible ligand) of BMPPSiF and known antagonists (WAY-100635, MPPF, and MefWAY) with monomeric, dimeric, and multimeric 5-HT1A receptor models were performed, with the highest G score obtained for docked BMPPSiF: -6.766 as compared with all three antagonists on the monomeric model. Multimeric induced-fit docking was also performed to visualize the comparable mode of binding under in vivo conditions, and a notably improved G score of -8.455 was observed for BMPPSiF. These data directly correlate the high binding potential of BMPPSiF with the bivalent binding mode obtained in the biological studies. The present study warrants wide application of the SiX-dipropargyl glycerol prosthetic group in the development of ligands for imaging with enhanced affinity markers for specific targeting based on peptides, nucleosides, and lipids.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Natriumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, 99.999% trace metals basis
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
Natriumchlorid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Natriumchlorid, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Natriumchlorid, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Paroxetin -hydrochlorid Hemihydrat, ≥98% (HPLC), powder
Sigma-Aldrich
Ketanserin -tartrat, ≥97%, solid
Sigma-Aldrich
Natriumchlorid, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Sigma-Aldrich
Natriumchlorid, random crystals, optical grade, 99.9% trace metals basis
USP
Paroxetin -hydrochlorid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Natriumchlorid, tested according to Ph. Eur.
Sigma-Aldrich
Spiperone, solid
Sigma-Aldrich
Natriumchlorid, tablet
Paroxetin -hydrochlorid Hemihydrat, European Pharmacopoeia (EP) Reference Standard
Paroxetin für die Systemeignung, European Pharmacopoeia (EP) Reference Standard