Direkt zum Inhalt
Merck
  • Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents.

Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents.

Biotechnology and bioengineering (2013-03-28)
Ina Schoenfeld, Stephan Dech, Benjamin Ryabenky, Bastian Daniel, Britta Glowacki, Reinhild Ladisch, Joerg C Tiller
ZUSAMMENFASSUNG

The use of enzymes as biocatalysts in organic media is an important issue in modern white biotechnology. However, their low activity and stability in those media often limits their full-scale application. Amphiphilic polymer conetworks (APCNs) have been shown to greatly activate entrapped enzymes in organic solvents. Since these nanostructured materials are not porous, the bioactivity of the conetworks is strongly limited by diffusion of substrate and product. The present manuscript describes two different APCNs as nanostructured microparticles, which showed greatly increased activities of entrapped enzymes compared to those of the already activating membranes and larger particles. We demonstrated this on the example of APCN particles based on PHEA-l-PDMS loaded with α-Chymotrypsin, which resulted in an up to 28,000-fold higher activity of the enzyme compared to the enzyme powder. Furthermore, lipase from Rhizomucor miehei entrapped in particles based on PHEA-l-PEtOx was tested in n-heptane, chloroform, and substrate. Specific activities in smaller particles were 10- to 100-fold higher in comparison to the native enzyme. The carrier activity of PHEA-l-PEtOx microparticles was tenfold higher with some 25-50-fold lower enzyme content compared to a commercial product.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Heptan, suitable for HPLC, ≥99%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Heptan, ReagentPlus®, 99%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Heptan, HPLC Plus, for HPLC, GC, and residue analysis, 99%
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Heptan, anhydrous, 99%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
Heptan, suitable for HPLC, ≥96%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Supelco
Chloroform, analytical standard
Supelco
Heptan, analytical standard
Sigma-Aldrich
Lipase, auf Immobead 150 immobilisiert aus Rhizomucor miehei, ≥300 U/g
Sigma-Aldrich
Heptan, biotech. grade, ≥99%