Direkt zum Inhalt
Merck
  • Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays.

Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays.

Science advances (2016-10-13)
Yin-Ting Yeh, Yi Tang, Aswathy Sebastian, Archi Dasgupta, Nestor Perea-Lopez, Istvan Albert, Huaguang Lu, Mauricio Terrones, Si-Yang Zheng
ZUSAMMENFASSUNG

Viral infectious diseases can erupt unpredictably, spread rapidly, and ravage mass populations. Although established methods, such as polymerase chain reaction, virus isolation, and next-generation sequencing have been used to detect viruses, field samples with low virus count pose major challenges in virus surveillance and discovery. We report a unique carbon nanotube size-tunable enrichment microdevice (CNT-STEM) that efficiently enriches and concentrates viruses collected from field samples. The channel sidewall in the microdevice was made by growing arrays of vertically aligned nitrogen-doped multiwalled CNTs, where the intertubular distance between CNTs could be engineered in the range of 17 to 325 nm to accurately match the size of different viruses. The CNT-STEM significantly improves detection limits and virus isolation rates by at least 100 times. Using this device, we successfully identified an emerging avian influenza virus strain [A/duck/PA/02099/2012(H11N9)] and a novel virus strain (IBDV/turkey/PA/00924/14). Our unique method demonstrates the early detection of emerging viruses and the discovery of new viruses directly from field samples, thus creating a universal platform for effectively remediating viral infectious diseases.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
5-Brom-4-chlor-3-indolylphosphat p-Toluidinsalz, ≥99% (HPLC)