Direkt zum Inhalt
Merck

940143

Sigma-Aldrich

Copper(II) nitrate trihydrate

new

≥99.9% trace metals basis

Synonym(e):

Copper dinitrate trihydrate, Copper(2+) nitrate trihydrate, Cupric nitrate trihydrate

Anmeldenzur Ansicht organisationsspezifischer und vertraglich vereinbarter Preise


About This Item

Lineare Formel:
Cu(NO3)2 · 3H2O
CAS-Nummer:
Molekulargewicht:
241.60
UNSPSC-Code:
12141711

Qualitätsniveau

Assay

(iodometric, redox titration)
≥99.9% trace metals basis

Form

(Crystal or Powder)

Löslichkeit

water: soluble

Anionenspuren

chloride (Cl-): ≤20 ppm
sulfate (SO42-): ≤50 ppm

Kationenspuren

Al: ≤10 ppm
Ca: ≤10 ppm
Cd: ≤10 ppm
Cr: ≤10 ppm
Fe: ≤10 ppm
K: ≤10 ppm
Mg: ≤10 ppm
Mn: ≤10 ppm
Na: ≤30 ppm
Ni: ≤10 ppm
Pb: ≤10 ppm
Si: ≤10 ppm
Zn: ≤10 ppm

Allgemeine Beschreibung

Copper(II) nitrate trihydrate is a crystalline compound with high solubility in water. It serves as an excellent precursor for the synthesis of high-purity compounds, nanomaterials, and catalysts.

Anwendung

Metal-organic frameworks (MOFs) have found applications in various fields such as gas storage, separations, sensors, catalysis, fuel cells, solar cells, nanotechnology devices, and drug delivery. Through a modular assembly strategy, a highly crystalline thin film of Cu-TCPP MOF was synthesized using Copper(II) nitrate trihydrate and the linker TCPP. This specific MOF holds significant promise due to its well-defined structure and potential for diverse applications. -Copper oxide nanoparticles of varying sizes were synthesized through a hydrothermal method using different concentrations of Copper(II) nitrate trihydrate. The pH of the solution was adjusted by adding NaOH or HNO3. This versatile approach allowed for the controlled synthesis of copper oxide nanoparticles with different sizes. - Mesoporous CuCo2O4 nanowires were synthesized as electrode materials for supercapacitors using Copper(II) nitrate trihydrate and Cobalt(II) nitrate hexahydrate using hydrothermal method. The synthesis involved nanocasting from a silica SBA-15 template. These electrode materials exhibited a capacitance of 1210 F g–1 at a current density of 2 A g–1, which significantly increased upon cycling to exceed 3000 F g–1. - A hybrid electrode comprising CuO and Cu2O micronanoparticles within a graphitized porous carbon matrix was synthesized using Copper(II) nitrate trihydrate via a one-step thermal transformation process. This hybrid electrode exhibited remarkable performance when employed as a negative electrode in lithium-ion and sodium-ion batteries, achieving capacities of 887.3 mAh g–1 at 60 mA g–1 and 302.9 mAh g–1 at 50 mA g–1 after 200 cycles, respectively. In addition,Copper(II) nitrate trihydrate serves as a suitable precursor for synthesizing copper catalysts for various applications. -Copper ferrite catalysts were synthesized using a co-precipitation method with the salt precursors Copper(II) nitrate trihydrate and Fe(NO3)3·9H2O. These catalysts exhibited heightened activity in the water-gas shift reaction. The improved catalytic performance can be attributed to factors such as enhanced Cu dispersion, a higher quantity of surface copper atoms, the presence of weak basic sites, and a strong interaction between copper and iron oxides, all resulting from the formation of copper ferrite.

Signalwort

Danger

Gefahreneinstufungen

Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Ox. Sol. 2 - Skin Corr. 1B

Lagerklassenschlüssel

5.1B - Oxidizing hazardous materials

WGK

WGK 3

Flammpunkt (°F)

Not applicable

Flammpunkt (°C)

Not applicable


Analysenzertifikate (COA)

Suchen Sie nach Analysenzertifikate (COA), indem Sie die Lot-/Chargennummer des Produkts eingeben. Lot- und Chargennummern sind auf dem Produktetikett hinter den Wörtern ‘Lot’ oder ‘Batch’ (Lot oder Charge) zu finden.

Besitzen Sie dieses Produkt bereits?

In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.

Die Dokumentenbibliothek aufrufen

Hydrothermal Synthesis of CuO Nanoparticles: Study on Effects of Operational Conditions on Yield, Purity, and Size of the Nanoparticles
Outokesh, M, etc.
Industrial & Engineering Chemistry Research, 50(6), 3540?3554-3540?3554 (2011)
Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors
Pendashteh, A, etc.
Chemistry of Materials, 27(11), 3919?3926-3919?3926 (2015)
Facile ?Modular Assembly? for Fast Construction of a Highly Oriented Crystalline MOF Nanofilm
Xu, G, etc.
Journal of the American Chemical Society, 134(40), 16524?16527-16524?16527 (2012)
Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite
Lin X, et al.
International Journal of Hydrogen Energy, 39(12), 6424-6432 (2014)
One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal?Organic Framework for Li- and Na-Ion Batteries
A-Young Kim, et.al
ACS Applied Materials & Interfaces, 8(30), 19514?19523-19514?19523 (2016)

Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..

Setzen Sie sich mit dem technischen Dienst in Verbindung.