Skip to Content
Merck
All Photos(1)

Key Documents

EHU066371

Sigma-Aldrich

MISSION® esiRNA

targeting human CARM1

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105324
NACRES:
NA.51

description

Powered by Eupheria Biotech

Quality Level

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

CCATGGGCTACATGCTCTTCAACGAGCGCATGCTGGAGAGCTACCTCCACGCCAAGAAGTACCTGAAGCCCAGCGGAAACATGTTTCCTACCATTGGTGACGTCCACCTTGCACCCTTCACGGATGAACAGCTCTACATGGAGCAGTTCACCAAGGCCAACTTCTGGTACCAGCCATCTTTCCATGGAGTGGACCTGTCGGCCCTCCGAGGTGCCGCGGTGGATGAGTATTTCCGGCAGCCTGTGGTGGACACATTTGACATCCGGATCCTGATGGCCAAGTCTGTCAAGTACACGGTGAACTTCTTAGAAGCCAAAGAAGGAGATTTGCACAGGATAGAAATCCCATTCAAATTCCACATGCTGCATTCAGGGCTGGTCCACGGCCTGGCTTTCTGGTTTGACGTTGCTTTCA

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Gene Information

General description

MISSION® esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Not finding the right product?  

Try our Product Selector Tool.

Storage Class Code

10 - Combustible liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Qiongjie Cao et al.
Eye and vision (London, England), 7, 35-35 (2020-08-09)
MicroRNAs (miRNAs) play critical roles in corneal development and functional homeostasis. Our previous study identified miR-184 as one of the most highly expressed miRNAs in the corneal epithelium. Even though its expression level plummeted dramatically during corneal epithelial wound healing
Deqin Wu et al.
Aging, 12(11), 10578-10593 (2020-06-04)
The underlying molecular mechanisms of tumorigenesis and progression of non-small cell lung cancer (NSCLC) are not yet fully elucidated. In the present study, invitro functional dissections suggest that siRNA-mediated silencing of CCNE2 profoundly attenuated the proliferative and colony-formative abilities of
Cynthia M Quintero et al.
Journal of molecular biology, 430(21), 4168-4182 (2018-08-29)
Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at RA-responsive elements
Priyanka Sharma et al.
Molecular cell, 73(1), 84-96 (2018-11-26)
The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify
Dongil Kim et al.
Cellular signalling, 26(9), 1774-1782 (2014-04-15)
Podocyte apoptosis induced by hyperglycemia is considered a critical factor in the development of diabetic nephropathy. Recent studies have implicated Notch signaling in podocyte apoptosis; however, its regulatory mechanisms are not fully understood. In this study, we found that high-glucose

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service