6-Aminofluorescein has been demonstrated to be useful fluorescent labeling reagent for fullerene-based liposome nanostructures termed ‘buckysomes′. 6-aminofluorescein dissolved in 0.1 N NaOH can be quantified from a maximum absorbance at 490 nm. Decarboxylated 6-aminofluorescein dissolved 6 N HCl (prepare by constant boiling at 110° C for 24 h) can be quantified from a maximum absorbance at 454 nm. Aldehyde groups are formed by oxidateive damage to proteins, which can be detected by conjugation to decarboxylated 6-aminofluorescein.
6-Aminofluorescein has been used to determine its ability to potentiate the antiviral activity of poly r (A-U).[1]
Oxidative modification of proteins is implicated in a number of physiologic and pathologic processes. Metal-catalyzed oxidative modification usually causes inactivation of enzymes and the appearance of carbonyl groups in amino acid side chains of the protein. We describe use of
W.E.G. Muller and H.C. Schroder
Biological Response Modifiers ? Interferons, Double-Stranded RNA and 2?,5?-Oligoadenylates (2012)
Biochimica et biophysica acta, 670(2), 181-189 (1981-09-29)
A method for covalent attachment of a fluorescent molecule to the carbohydrate moieties of glycoproteins is described. The glycoproteins were oxidized with periodate under mild conditions selective for sialic acid (Van Lenten, L. and Ashwell, G. (1971) J. Biol. Chem.
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.