Skip to Content
Merck

Molecular characterization of putative chordoma cell lines.

Sarcoma (2011-01-22)
Silke Brüderlein, Joshua B Sommer, Paul S Meltzer, Sufeng Li, Takuya Osada, David Ng, Peter Möller, David A Alcorta, Michael J Kelley
ABSTRACT

Immortal tumor cell lines are an important model system for cancer research, however, misidentification and cross-contamination of cell lines are a common problem. Seven chordoma cell lines are reported in the literature, but none has been characterized in detail. We analyzed gene expression patterns and genomic copy number variations in five putative chordoma cell lines (U-CH1, CCL3, CCL4, GB60, and CM319). We also created a new chordoma cell line, U-CH2, and provided genotypes for cell lines for identity confirmation. Our analyses revealed that CCL3, CCL4, and GB60 are not chordoma cell lines, and that CM319 is a cancer cell line possibly derived from chordoma, but lacking expression of key chordoma biomarkers. U-CH1 and U-CH2 both have gene expression profiles, copy number aberrations, and morphology consistent with chordoma tumors. These cell lines also harbor genetic changes, such as loss of p16, MTAP, or PTEN, that make them potentially useful models for studying mechanisms of chordoma pathogenesis and for evaluating targeted therapies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trypsin-EDTA solution, 0.25%, sterile-filtered, BioReagent, suitable for cell culture, 2.5 g porcine trypsin and 0.2 g EDTA, 4Na per liter of Hanks′ Balanced Salt Solution with phenol red
Sigma-Aldrich
Anti-Keratin Epithelial Antibody, clone AE3, clone AE3, Chemicon®, from mouse