Skip to Content
Merck
  • NBHA reduces acrolein-induced changes in ARPE-19 cells: possible involvement of TGFβ.

NBHA reduces acrolein-induced changes in ARPE-19 cells: possible involvement of TGFβ.

Current eye research (2011-02-12)
Eileen Vidro-Kotchan, Bharat Bhushan Yendluri, Terrie Le-Thai, Andrew Tsin
ABSTRACT

Acrolein, a toxic, reactive aldehyde formed metabolically and environmentally, has been implicated in the damage to and dysfunction of the retinal pigment epithelium (RPE) that accompanies age-related macular degeneration (AMD). Our purpose was to investigate the potential of acrolein to influence the release of transforming growth factor beta-2 (TGFβ2) and vascular endothelial growth factor (VEGF), to assess the ability of N-benzylhydroxylamine (NBHA) to prevent the effect of acrolein on cytokine release and reduction of viable cells, and to explore the pathway by which acrolein might be causing the increase of VEGF. Confluent ARPE-19 cells were treated with acrolein and/or NBHA. They were also pretreated with SIS3, a specific inhibitor of SMAD 3, and ZM39923, a JAK3 inhibitor, before being treated with acrolein. Viable cells were counted; ELISA was used to measure the TGFβ2 and/or VEGF in the conditioned media. Acrolein was shown to reduce the number of viable ARPE-19 cells and to upregulate the release of the proangiogenic cytokines TGFβ2 and VEGF. Co-treatment with 200 μM NBHA significantly reduced the effects of acrolein on viable cell number and TGFβ2 release. Pretreatment of the cells with SIS3 partially blocked the action of acrolein on decreased viable cell number and VEGF upregulation, suggesting that part of the effects of acrolein are mediated by the increased levels of TGFβ and its signaling. Our results suggest that the action of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells is partially mediated by TGFβ2. By reducing the effects of acrolein, NBHA and SIS3 could be potential pharmacological agents in the prevention and progression of acrolein-induced damage to the RPE that relates to AMD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
O-(4-Nitrobenzyl)hydroxylamine hydrochloride, ≥98.5% (AT)
Sigma-Aldrich
Smad3 Inhibitor, SIS3, Smad3 Inhibitor, SIS3, CAS 1009104-85-1, is a cell-permeable, selective inhibitor of TGF-β1-dependent Smad3 phosphorylation and Smad3-mediated signaling. Does not affect Smad2, MAPK, ERK, or PI3-K.
Sigma-Aldrich
N-Benzylhydroxylamine hydrochloride, puriss., ≥99.0% (AT)