Skip to Content
Merck
  • Variant HNF1 modulates epithelial plasticity of normal and transformed ovary cells.

Variant HNF1 modulates epithelial plasticity of normal and transformed ovary cells.

Neoplasia (New York, N.Y.) (2008-12-03)
Antonella Tomassetti, Giuseppina De Santis, Giancarlo Castellano, Silvia Miotti, Mimma Mazzi, Daniela Tomasoni, Frans Van Roy, Maria Luisa Carcangiu, Silvana Canevari
ABSTRACT

Ovarian carcinoma arises from the ovarian surface epithelium, which undergoes phenotypic changes characteristic of müllerian epithelium during the first stages of tumorigenesis. The variant isoform of the hepatocyte nuclear factor 1 (vHNF1) is a transcription factor involved in the development of tissues derived from the müllerian duct. Here, we show that vHNF1 knockdown in two ovarian carcinoma cell lines, SKOV3 and IGROV1, leads to reduced E-cadherin (E-cadh) expression and decreased proliferation rate. Accordingly, SKOV3 cells ectopically expressing a dominant-negative (DN) vHNF1 mutant undergo an epithelial-mesenchymal-like transition, acquiring a spindle-like morphology, loss of E-cadh, and disrupted cell-cell contacts. Gene expression profiling of DNvHNF1 cells on the basis of a newly compiled list of epithelial-mesenchymal transition-related genes revealed a correlation between vHNF1 loss-of-function and acquisition of the mesenchymal phenotype. Indeed, phenotypic changes were associated with increased Slug transcription and functionality. Accordingly, vHNF1-transfected immortalized ovarian surface epithelial cells showed down-regulation of Snail and Slug transcripts. In DNvHNF1-transfected SKOV3 cells, growth rate decreased, and in vHNF1-transfected immortalized ovarian surface epithelial cells, growth rate increased. By immunohistochemistry, we found a strong association of vHNF1 with E-cadh in clear cell and in a subset of serous carcinomas, data that could potentially contribute in distinguishing different types of ovarian tumors. Our results may help in understanding the biology of ovarian carcinoma, identifying early detection markers, and opening potential avenues for therapeutic intervention.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
StableCell RPMI-1640, With stable glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
SAFC
RPMI-1640 Medium, with 2.05 mM L-glutamine, with 25mM HEPES, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine and sodium bicarbonate. Without arginine, leucine, lysine, and phenol red, liquid, sterile-filtered, suitable for cell culture, designed for isotope labeling for cell culture applications
Sigma-Aldrich
RPMI-1640 Medium, Modified, with sodium bicarbonate, without methionine, cystine and L-glutamine, liquid, sterile-filtered, suitable for cell culture
SAFC
RPMI-1640 Medium, 10 ×, Without L-glutamine, folic acid and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine, without glucose and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Dutch Modification, with sodium bicarbonate and 20mM HEPES, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Modified, with 20 mM HEPES and L-glutamine, without sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine, without sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
SAFC
RPMI-1640 Medium, Hybri-Max, Modified, with L-glutamine, 4500 mg/L glucose and 15mM HEPES, without sodium bicarbonate, powder, suitable for hybridoma
SAFC
RPMI-1640 Medium, AutoMod, without L-glutamine and sodium bicarbonate, powder, suitable for cell culture
SAFC
RPMI-1640 Medium, HEPES Modification, With 25 mM HEPES, without L-glutamine., liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Modified, with L-glutamine, without phenol red and sodium bicarbonate, powder, suitable for cell culture
SAFC
RPMI-1640 Medium, HEPES Modification, with L-glutamine and 25mM HEPES, without sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Modified, with sodium bicarbonate, without L-glutamine and phenol red, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
MES, low moisture content, ≥99% (titration)