Skip to Content
Merck
All Photos(1)

Key Documents

EHU155611

Sigma-Aldrich

MISSION® esiRNA

targeting human KDR

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105324
NACRES:
NA.51

description

Powered by Eupheria Biotech

Quality Level

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

AGCGATGGCCTCTTCTGTAAGACACTCACAATTCCAAAAGTGATCGGAAATGACACTGGAGCCTACAAGTGCTTCTACCGGGAAACTGACTTGGCCTCGGTCATTTATGTCTATGTTCAAGATTACAGATCTCCATTTATTGCTTCTGTTAGTGACCAACATGGAGTCGTGTACATTACTGAGAACAAAAACAAAACTGTGGTGATTCCATGTCTCGGGTCCATTTCAAATCTCAACGTGTCACTTTGTGCAAGATACCCAGAAAAGAGATTTGTTCCTGATGGTAACAGAATTTCCTGGGACAGCAAGAAGGGCTTTACTATTCCCAGCTACATGATCAGCTATGCTGGCATGGTCTTCTGTGAAGCAAAAATTAATGATGAAAGTTACCAGTCTATTATGTACATAGTTGTCGTTGTAGGGTATAGGATTTATGATGTGGTTCTGAGTCCGTCTCATGGAA

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Gene Information

General description

MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

10 - Combustible liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Chao Ji et al.
Oncotarget, 7(51), 84748-84757 (2016-10-08)
Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular
Evan Bailey et al.
The American journal of pathology, 187(1), 25-32 (2016-11-16)
Vascular endothelial growth factor (VEGF)-D is capable of inducing angiogenesis and lymphangiogenesis through signaling via VEGF receptor (VEGFR)-2 and VEGFR-3, respectively. Mutations in the FIGF (c-fos-induced growth factor) gene encoding VEGF-D have not been reported previously. We describe a young
W-Z Hou et al.
European review for medical and pharmacological sciences, 21(5), 1080-1087 (2017-03-25)
Cerebral aneurysm is a common vascular disease with high morbidity and mortality. Vascular smooth muscle deletion or dysplasia is an important reason for the development of cerebral aneurysm. MiRNAs participate in a variety of biological functions through inhibiting target gene
Lin-Bin Zhou et al.
International journal of ophthalmology, 13(7), 1039-1045 (2020-07-21)
To identify proangiogenic factors engaged in neovascular age-related macular degeneration (AMD) except vascular endothelial growth factor (VEGF) from human retinal pigment epithelial (hRPE) cells and investigate the underlying mechanisms. VEGF receptor 2 (VEGFR2) in ARPE-19 cells was depleted by siRNA
Lilian Saryeddine et al.
PloS one, 11(11), e0165876-e0165876 (2016-11-03)
EGFR and VEGFR pathways play major roles in solid tumor growth and progression, however, little is known about these pathways in haematological tumors. This study investigated the crosstalk between EGFR and VEGFR2 signaling in two hematological in vitro models: THP1

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service