Skip to Content
Merck
All Photos(2)

Key Documents

GF89451489

Palladium

rod, 50mm, diameter 2.0mm, 99.95%

Synonym(s):

Palladium, PD007920

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Pd
CAS Number:
Molecular Weight:
106.42
MDL number:
UNSPSC Code:
12141733
PubChem Substance ID:
NACRES:
NA.23

Assay

≥99.95%

form

rod

manufacturer/tradename

Goodfellow 894-514-89

resistivity

9.96 μΩ-cm, 20°C

bp

2970 °C (lit.)

mp

1554 °C (lit.)

density

12.02 g/cm3 (lit.)

SMILES string

[Pd]

InChI

1S/Pd

InChI key

KDLHZDBZIXYQEI-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Qing-An Chen et al.
Chemical Society reviews, 42(2), 497-511 (2012-11-10)
The transition metal catalyzed asymmetric hydrogenation of unsaturated compounds arguably presents one of the most attractive methods for the synthesis of chiral compounds. Over the last few decades, Pd has gradually grown up as a new and popular metal catalyst
Abdellatif Essoumhi et al.
Journal of nanoscience and nanotechnology, 14(2), 2012-2023 (2014-04-23)
This review reports on the recent advances in the synthesis and physico-chemical properties of palladium-containing perovskites. Initially, the perovskite structure is briefly reviewed, then palladium-containing perovskites synthesis and physico-chemical properties are detailed. The applications of palladium-containing perovskites in catalysis; namely
Stephan Enthaler et al.
Chemical Society reviews, 40(10), 4912-4924 (2011-06-07)
The formation of oxygen-carbon bonds is one of the fundamental transformations in organic synthesis. In this regard the application of palladium-based catalysts has been extensively studied during recent years. Nowadays it is an established methodology and the success has been
Kiyofumi Inamoto
Chemical & pharmaceutical bulletin, 61(10), 987-996 (2013-10-04)
Herein, we describe our development of synthetic methods for heterocyclic compounds based on the palladium-catalyzed carbon-hydrogen bond (C-H) functionalization/intramolecular carbon-heteroatom (nitrogen or sulfur) bond formation process. By this C-H cyclization method, we efficiently prepared various N-heterocycles, including indazoles, indoles, and
Jana Doháňošová et al.
Molecules (Basel, Switzerland), 18(6), 6173-6192 (2013-05-28)
The palladium (II)-catalysed reactions of alkenols and aminoalkenols such as oxycarbonylations or bicyclisations are powerful methods for the construction of oxygen and nitrogen-containing heterocyclic compounds. This review highlights recent progress in the development of the asymmetric palladium(II)-catalysed Wacker-type cyclisations of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service