Saltar al contenido
Merck

Mirror-image pain after nerve reconstruction in rats is related to enhanced density of epidermal peptidergic nerve fibers.

Experimental neurology (2015-03-10)
S Kambiz, E M Brakkee, L S Duraku, S E R Hovius, T J H Ruigrok, E T Walbeehm
RESUMEN

Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Metanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Metanol, SAJ first grade, ≥99.5%
Supelco
Ethanol solution, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Metanol, suitable for HPLC
Sigma-Aldrich
Metanol, SAJ special grade
Sigma-Aldrich
Etanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Etanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Etanol, ≥99.5%
Sigma-Aldrich
o-Xylene, anhydrous, 97%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, meets USP testing specifications
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Metanol, NMR reference standard
Sigma-Aldrich
Etanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol solution, suitable for fixing solution (blood films)
Sigma-Aldrich
Etanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Etanol, ≥99.5%, SAJ super special grade
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Metanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Etanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Etanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Etanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
o-Xylene, SAJ special grade, ≥98.5%