Saltar al contenido
Merck

Funcionalización C–H

La funcionalización C–H se ha dado en llamar el santo grial de la química orgánica sintética.1 Los recientes esfuerzos realizados en química orgánica, organometálica y catálisis han logrado avances importantes tanto en la comprensión de la reactividad de los enlaces C–H como en el desarrollo de reacciones sólidas aprovechando esta información, lo que sugiere que es el momento adecuado para introducir de manera generalizada estas tácticas en el léxico retrosintético.2-11 La conversión fiable y predecible de un enlace C–H en un enlace C–C, C–N, C–O o C–X de manera selectiva y controlada es beneficiosa en cuanto a economía de pasos y reducción de residuos.

Los nuevos métodos de activación de C–H amplían el número de sitios de una molécula determinada sobre los que se puede actuar, lo que aumenta la oportunidad de transformarla en un producto más complejo. Además, permite la actuación sobre tipos completamente diferentes de enlaces químicos en la síntesis orgánica, particularmente con una elevada quimioselectividad. En combinación con la química de grupos funcionales tradicional, la funcionalización C–H optimiza considerablemente la síntesis química para la construcción de productos naturales complejos y compuestos farmacéuticos. Si bien son evidentes las ventajas de la aplicación de la lógica de la funcionalización C–H,12 muchos planes de estudio de química orgánica aún no han incorporado este enfoque, del cual puede encontrarse más información en el Manual de funcionalización C-H.


Artículos técnicos relacionados

Encontrar más artículos







Referencias bibliográficas

1.
Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. 1995. Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Acc. Chem. Res.. 28(3):154-162. https://doi.org/10.1021/ar00051a009
2.
He J, Wasa M, Chan KSL, Shao Q, Yu J. 2017. Palladium-Catalyzed Transformations of Alkyl C?H Bonds. Chem. Rev.. 117(13):8754-8786. https://doi.org/10.1021/acs.chemrev.6b00622
3.
Wang D, Weinstein AB, White PB, Stahl SS. 2018. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev.. 118(5):2636-2679. https://doi.org/10.1021/acs.chemrev.7b00334
4.
Davies HML, Morton D. 2016. Recent Advances in C?H Functionalization. J. Org. Chem.. 81(2):343-350. https://doi.org/10.1021/acs.joc.5b02818
5.
Upp DM, Lewis JC. 2017. Selective C?H bond functionalization using repurposed or artificial metalloenzymes. Current Opinion in Chemical Biology. 3748-55. https://doi.org/10.1016/j.cbpa.2016.12.027
6.
Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.. 45(3):546-576. https://doi.org/10.1039/c5cs00628g
7.
Yamaguchi J, Yamaguchi AD, Itami K. 2012. C?H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed.. 51(36):8960-9009. https://doi.org/10.1002/anie.201201666
8.
Lyons TW, Sanford MS. 2010. Palladium-Catalyzed Ligand-Directed C?H Functionalization Reactions. Chem. Rev.. 110(2):1147-1169. https://doi.org/10.1021/cr900184e
9.
Wencel-Delord J, Dröge T, Liu F, Glorius F. 2011. Towards mild metal-catalyzed C?H bond activation. Chem. Soc. Rev.. 40(9):4740. https://doi.org/10.1039/c1cs15083a
10.
Arockiam PB, Bruneau C, Dixneuf PH. 2012. Ruthenium(II)-Catalyzed C?H Bond Activation and Functionalization. Chem. Rev.. 112(11):5879-5918. https://doi.org/10.1021/cr300153j
11.
Engle KM, Mei T, Wasa M, Yu J. 2012. Weak Coordination as a Powerful Means for Developing Broadly Useful C?H Functionalization Reactions. Acc. Chem. Res.. 45(6):788-802. https://doi.org/10.1021/ar200185g
12.
Gutekunst WR, Baran PS. 2011. C?H functionalization logic in total synthesis. Chem. Soc. Rev.. 40(4):1976. https://doi.org/10.1039/c0cs00182a
Inicie sesión para continuar.

Para seguir leyendo, inicie sesión o cree una cuenta.

¿No tiene una cuenta?