S4503
DL-Serine hydroxamate
≥97% (TLC), suitable for ligand binding assays
Synonym(s):
SHX
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
product name
DL-Serine hydroxamate, seryl-tRNA synthetase inhibitor
Assay
≥97% (TLC)
form
powder
technique(s)
ligand binding assay: suitable
color
white to off-white
application(s)
cell analysis
storage temp.
−20°C
SMILES string
NC(CO)C(=O)NO
InChI
1S/C3H8N2O3/c4-2(1-6)3(7)5-8/h2,6,8H,1,4H2,(H,5,7)
InChI key
LELJBJGDDGUFRP-UHFFFAOYSA-N
Application
Serine has been used as an inhibitor of seryl-tRNA synthetase. DL-Serine hydroxamate is used to induce metabolic synthesis of guanosine 3′-diphosphate 5′-diphosphate (ppGpp) in E. coli by amino acid starvation. It is also used to synchronize cell cycle in E. coli cultures by inhibition of tRNA charging.
Biochem/physiol Actions
Serine is involved in the one-carbon unit metabolism. It is associated with the biosynthesis of cysteine, ceramide, phosphatidylserine, purine and pyrimidine. In bacteria, it participates in tryptophan synthesis. Gluconeogenesis, one of the important biochemical processes, involves serine, particularly in ruminants. Protein phosphorylation is one such event that utilizes serine. Glycine, a metabolic product of serine, serves as an antioxidant and a neurotransmitter. D-serine is known to activate the N-methyl-D-aspartate (NMDA) receptors of the brain. Serine hydroxamate, a structural analogue of serine prevents seryl-tRNA (transfer ribonucleic acid) charging and thereby decreases phospholipid and nucleic acid synthesis in Escherichia coli.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
PLoS genetics, 4(12), e1000300-e1000300 (2008-12-17)
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after
Journal of bacteriology, 183(18), 5376-5384 (2001-08-22)
During nutrient starvation, Escherichia coli elicits a stringent response involving the ribosome-associated protein RelA. Activation of RelA results in a global change in the cellular metabolism including enhanced expression of the stationary-phase sigma factor RpoS. In the human pathogen Pseudomonas
Effect of serine hydroxamate on the growth of Escherichia coli.
Journal of Bacteriology, 106(3) (1971)
European journal of biochemistry, 214(3), 869-877 (1993-06-15)
The Saccharomyces cerevisiae serS gene which encodes seryl-tRNA synthetase (SerRS) was expressed in Escherichia coli from the promoter and the ribosome binding sequences contained in its own 5'-flanking region. The low level of yeast SerRS in the prokaryotic host was
Journal of general microbiology, 130(10), 2549-2558 (1984-10-01)
The accumulation of RNA and protein and the kinetics of nucleoside triphosphate and guanosine polyphosphate pools during amino acid starvation and carbon source downshift were investigated in Streptomyces hygroscopicus. RNA accumulation was controlled stringently during both amino acid starvation and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service