Skip to Content
Merck
All Photos(1)

Documents

776785

Sigma-Aldrich

InP/ZnS quantum dots

stabilized with oleylamine ligands, fluorescence λem 650 nm, 5 mg/mL in toluene

Synonym(s):

Cadmium free core shell quantum dots, Cadmium free quantum dots, Core/Shell heavy metal free quantum dots, Fluorescent nanocrystals

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
InP/ZnS
UNSPSC Code:
26111700
NACRES:
NA.23

Quality Level

form

liquid

concentration

5 mg/mL in toluene

fluorescence

FWHM <70 nm, quantum yield ~25%
λem 650 nm

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Application

InP/ZnS core shell nanocrystals are Cadmium free/heavy metal free quantum dots suitable for different applications like light emitting diodes (LEDs); display; biomedical applications. The toxicity of Cd compounds and the corresponding regulations worldwide makes these InP/ZnS quantum dots more desirable alternatives for consumer applications.

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 3 - Asp. Tox. 1 - Carc. 1B - Flam. Liq. 2 - Repr. 2 - Skin Irrit. 2 - STOT RE 1 - STOT RE 2 - STOT SE 3

Target Organs

Central nervous system, Lungs

WGK

WGK 3

Flash Point(F)

43.0 °F

Flash Point(C)

6.1 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Arun Narayanaswamy et al.
ACS nano, 3(9), 2539-2546 (2009-08-18)
Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width
Patrick T K Chin et al.
Biomaterials, 31(26), 6823-6832 (2010-07-14)
Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging.
Greco; T.
Proc. SPIE: Int. Soc. Opt. Eng., 8424(NanophotonicsIV, 842439/1-842439/1 (2012)

Articles

Dye-sensitized solar cells as a promising, low-cost photovoltaic technology.

Dye-sensitized solar cells as a promising, low-cost photovoltaic technology.

Dye-sensitized solar cells as a promising, low-cost photovoltaic technology.

Dye-sensitized solar cells as a promising, low-cost photovoltaic technology.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service