Saltar al contenido
Merck

Impact of FHIT loss on the translation of cancer-associated mRNAs.

Molecular cancer (2017-12-29)
Daniel L Kiss, William Baez, Kay Huebner, Ralf Bundschuh, Daniel R Schoenberg
RESUMEN

FHIT is a genome caretaker/tumor suppressor that is silenced in >50% of cancers. Although it was identified more than 20 years ago, questions remain as to how FHIT loss contributes to cancer, and conversely, how FHIT acts to maintain genome integrity and suppress malignancy. Fhit belongs to the histidine triad family of enzymes that catalyze the degradation of nucleoside 5',5'-triphosphates, including the m Ribosome profiling identified several hundred mRNAs for which coding region ribosome occupancy changed as a function of Fhit expression. While many of these changes could be explained by changes in mRNA steady-state, a subset of these showed changes in translation efficiency as a function of Fhit expression. The onset of malignancy has been linked to changes in 5'-UTR ribosome occupancy and this analysis also identified ribosome binding to 5'-untranslated regions (UTRs) of a number of cancer-associated mRNAs. 5'-UTR ribosome occupancy of these mRNAs differed between Fhit-negative and Fhit-positive cells, and in some cases these differences correlated with differences in coding region ribosome occupancy. In summary, these findings show Fhit expression impacts the translation of a number of cancer associated genes, and they support the hypothesis that Fhit's genome protective/tumor suppressor function is associated with post-transcriptional changes in expression of genes whose dysregulation contributes to malignancy.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ponasterone A, ≥65%