Saltar al contenido
Merck

Nutritional efficiency of succinic acid and glutamic acid dimethyl esters in colon carcinoma cells.

The American journal of physiology (1996-05-01)
T M Zhang, H Jijakli, W J Malaisse
RESUMEN

The dimethyl esters of succinic acid (SAD) and glutamic acid (GME) were found to be efficiently metabolized in colon carcinoma cells of the Caco-2 line. The rate of [1,4-14C]SAD and [2,3-14C]SAD conversion to radioactive acidic metabolites, CO2, amino acids, pyruvic acid, and lactic acid suggested that the catabolism of the ester-derived succinic acid occurred mainly through the sequence of reactions catalyzed by succinate dehydrogenase, fumarase, and the malic enzyme. This coincided with a marked sparing action of SAD on the utilization of D-[2-(3)H]glucose and D-[5-(3)H]glucose and generation of 14C-labeled acid metabolites, CO2, and lactic acid from D-[U-14C]glucose by the enterocytes. Likewise, the conversion of [U-14C]GME to 14C-labeled amino acids, its oxidation compared with that of [1-(14)C]GME, and the production of NH4+ in the absence or presence of GME indicated efficient catabolism of the latter ester. Like SAD, GME decreased the utilization of D-[5-(3)H]glucose and generation of 14C-labeled acidic metabolites, pyruvate, and CO2 from D-[6-(14)C]glucose, while increasing the generation of 14C-labeled amino acids from the labeled hexose. The oxidation of D-[6-(14)C]glucose was even more severely inhibited by GME. In normal rat intestinal cells, SAM, SAD, and GME also exerted a marked sparing action on D-[U-14C]glucose oxidation. The present findings suggest, therefore, that these esters could possibly be used to sustain ATP generation in intestinal cells.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
L-Glutamic acid dimethyl ester hydrochloride, ≥99.0% (anhydrous basis material, AT)