Saltar al contenido
Merck

Cellular Target Engagement Approaches to Monitor Epigenetic Reader Domain Interactions.

SLAS discovery : advancing life sciences R & D (2019-12-26)
Alexander N Phillipou, Charles S Lay, Charlotte E Carver, Cassie Messenger, John P Evans, Antonia J Lewis, Laurie J Gordon, Mahnoor Mahmood, Luke A Greenhough, Douglas Sammon, Aaron T Cheng, Syandan Chakraborty, Emma J Jones, Simon C C Lucas, Kelly M Gatfield, David J Brierley, Peter D Craggs
RESUMEN

Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.

MATERIALES
Referencia del producto
Marca
Descripción del producto

BRAND® 96-well microplate, U-bottom, round bottom, non-sterile
Sigma-Aldrich
Bromosporine, ≥98% (HPLC)