Skip to Content
Merck
All Photos(1)

Key Documents

54273-U

Supelco

Ascentis® Express 90 Å C18 (2.7 μm) HPLC Columns

L × I.D. 15 cm × 500 μm HPLC Capillary Column

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41115700
eCl@ss:
32110501
NACRES:
SB.52

product name

Ascentis® Express C18, 2.7 Micron Capillary HPLC Column, 2.7 μm particle size, L × I.D. 15 cm × 500 μm

material

stainless steel column

Quality Level

Agency

suitable for USP L1

product line

Ascentis®

feature

endcapped

manufacturer/tradename

Ascentis®

packaging

1 ea of

parameter

400 bar pressure (5801 psi)
60 °C temp. range

technique(s)

HPLC: suitable
LC/MS: suitable
UHPLC-MS: suitable
UHPLC: suitable

L × I.D.

15 cm × 500 μm

surface area

135 m2/g

impurities

<5 ppm metals

matrix

Fused-Core particle platform
superficially porous particle

matrix active group

C18 (octadecyl) phase

particle size

2.7 μm

pore size

90 Å pore size

operating pH

2-9

application(s)

food and beverages

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

Other Notes

The capillary housing for Ascentis® Express capillary columns is PEEK with stainless steel end fittings.

Recommended products

Discover LiChropur reagents ideal for HPLC or LC-MS analysis

Legal Information

Ascentis is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Pankaj Partani et al.
Journal of chromatographic science, 54(8), 1385-1396 (2016-05-27)
A liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of simvastatin (SV) and simvastatin acid (SVA) in human plasma. To improve assay sensitivity and achieve simultaneous analysis, SVA monitored in (-)ESI (electrospray ionization) mode within
Babu Rao Chandu et al.
SpringerPlus, 2(1), 194-194 (2013-06-07)
A bioequivalence study was proved of generic Febuxostat 80 mg tablets (T) in healthy volunteers.For this purpose, Authors developed a simple, sensitive, selective, rapid, rugged and reproducible liquid chromatography-tandem mass spectrometry method for the quantification of Febuxostat (FB) in human
Virginia Brighenti et al.
Journal of pharmaceutical and biomedical analysis, 143, 228-236 (2017-06-14)
The present work was aimed at the development and validation of a new, efficient and reliable technique for the analysis of the main non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) inflorescences belonging to different varieties. This study was designed
Francesco Pio Prencipe et al.
Journal of chromatography. A, 1349, 50-59 (2014-05-27)
The study was aimed at developing a new analytical method for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L. (hop), together with a simple extraction procedure. Different extraction techniques, including maceration, heat reflux extraction (HRE), ultrasound-assisted extraction (UAE)
Ahmed Abrahim et al.
Journal of pharmaceutical and biomedical analysis, 51(1), 131-137 (2009-09-18)
Fused-core silica stationary phases represent a key technological advancement in the arena of fast HPLC separations. These phases are made by fusing a 0.5 microm porous silica layer onto 1.7 microm nonporous silica cores. The reduced intra-particle flow path of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service