Skip to Content
Merck
All Photos(1)

Key Documents

H3917

Sigma-Aldrich

Heparinase I and III Blend from Flavobacterium heparinum

lyophilized powder, stabilized with ∼ 25% (w/w) bovine serum albumin, ≥200 unit/mg protein (enzyme + BSA)

Synonym(s):

Heparinase I and Heparinase III blend

Sign Into View Organizational & Contract Pricing


About This Item

Enzyme Commission number:
UNSPSC Code:
12352204
NACRES:
NA.54

biological source

bacterial (Flavobacterium heparinum)

Quality Level

conjugate

conjugate (Glucosaminoglycan)

form

lyophilized powder

specific activity

≥200 units/mg protein

concentration

≥200 unit/mg protein (enzyme + BSA)

shipped in

dry ice

storage temp.

−20°C

General description

Heparinase is an inducible, non-extracellular heparin-degrading enzyme. Three types of heparinises are produced by Flavobacterium heparinum and contains specific sequences of heparin.

Application

Heparinase I and III Blend from Flavobacterium heparinum has been used in:
  • the digestion of heparan sulfate from ovine vitreous
  • human embryonic kidney cells
  • glycosaminoglycans from arterial tissues
  • P0 retinae digestion

Biochem/physiol Actions

Heparinase I and III plays vital role in various biological processes: modulate cell-growth factor interactions, cell-lipoprotein interactions, neovascularization. It cleaves highly sulphated polysaccharide chains in presence of 2-O-sulfated α-L-idopyranosyluronic acid and β-D-glucopyranosyluronic acid residues of polysaccharides.
Heparin-degrading lyase that recognizes heparin sulfate proteoglycan as its primary substrate.

Packaging

Sold on the basis of Heparinase I units

Unit Definition

One unit will form 0.1 micromole of unsaturated uronic acid per hour at 7.5 at 25 degrees C using Heparin, Sodium as substrate for heparinase I.

One unit will form 0.1 micromole of unsaturated uronic acid per hour at 7.5 at 25 degrees C using bovine kidney Heparan, Sulfate as substrate for heparinase III.

One unit will form 0.1 μmole of unsaturated uronic acid per hr at pH 7.5 at 25 °C. One International Unit (I.U.) is equivalent to approx. 600 Sigma units. Package sizes are sold in Sigma units.

Other Notes

Enzyme Commission Numbers: 4.2.2.7 Hep I and 4.2.2.8 Hep III

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

S Ernst et al.
Critical reviews in biochemistry and molecular biology, 30(5), 387-444 (1995-01-01)
Glycosaminoglycans (GAGs) play an intricate role in the extracellular matrix (ECM), not only as soluble components and polyelectrolytes, but also by specific interactions with growth factors and other transient components of the ECM. Modifications of GAG chains, such as isomerization
Mi Gyeom Kim et al.
Scientific reports, 11(1), 3378-3378 (2021-02-11)
Cell surface heparan sulfate proteoglycan (HSPG)-mediated endocytosis results in poor yields of recombinant human bone morphogenetic proteins (rhBMPs) from CHO cell cultures. Upon incubation of rhBMP-2 and rhBMP-7 with CHO cells at 37 °C, both rhBMP-2 and rhBMP-7 bound to the
P M Galliher et al.
Applied and environmental microbiology, 41(2), 360-365 (1981-02-01)
Heparinase production by Flavobacterium heparinum in complex protein digest medium, with heparin employed as the inducer, has been studied and improved. The maximum productivity of heparinase has been increased 156-fold over that achieved by previously published methods to 375 U/liter
U R Desai et al.
Archives of biochemistry and biophysics, 306(2), 461-468 (1993-11-01)
A detailed knowledge about the substrate specificities of the heparin lyases is necessary when using these enzymes as tools for elucidating the sequence of heparin and heparan sulfate. The substrate specificity of heparin lyases I, II, and III have been
Yaron E Antebi et al.
Cell, 170(6), 1184-1196 (2017-09-09)
The bone morphogenetic protein (BMP) signaling pathway comprises multiple ligands and receptors that interact promiscuously with one another and typically appear in combinations. This feature is often explained in terms of redundancy and regulatory flexibility, but it has remained unclear

Articles

Uncover more about glycosaminoglycans and proteoglycans including the structure of glycosaminoglycans (GAGs), the different types of GAGs, and their functions.

Uncover more about glycosaminoglycans and proteoglycans including the structure of glycosaminoglycans (GAGs), the different types of GAGs, and their functions.

Uncover more about glycosaminoglycans and proteoglycans including the structure of glycosaminoglycans (GAGs), the different types of GAGs, and their functions.

Uncover more about glycosaminoglycans and proteoglycans including the structure of glycosaminoglycans (GAGs), the different types of GAGs, and their functions.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service