Skip to Content
Merck
All Photos(3)

Key Documents

373974

Sigma-Aldrich

Poly(2-ethyl-2-oxazoline)

average Mw ~500,000, PDI 3‑4

Synonym(s):

PEOX, POx, PetOx, poly 2-ethyloxazoline, polyethyloxazoline

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[-N(COC2H5)CH2CH2-]n
CAS Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

form

solid

Quality Level

mol wt

average Mw ~500,000

viscosity

60-80 cSt, 10 % in H2O

density

1.14 g/mL at 25 °C (lit.)

PDI

3‑4

InChI

1S/C5H9NO/c1-2-5-6-3-4-7-5/h2-4H2,1H3

InChI key

NYEZZYQZRQDLEH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

This Poly(2-ethyl-2-oxazoline) polymer is amorphous and water soluble with good temperature stability. Jordan and coworkers showed biocompatibility, no accumulation in tissue, and rapid clearance from the bloodstream. End-group modified poly(2-ethyl-2-oxazoline)s have been conjugated to peptides, and were shown as versatile alternatives to poly(ethylene glycol) (PEG) for both protein and small drug conjugation.

Potential substitute for poly(vinyl alcohol) and poly(vinyl pyrrolidone). Adhesion promoter in coatings. Heat sealing and remoistenable hot-melt adhesive

Features and Benefits

Nonionic, water-soluble thermoplastic. Better heat stability than poly(vinyl alcohol). Good melt flow, shear stability and Newtonian characteristics. Water is a room temperature Theta solvent.

Physical form

N-propionyl substituted linear polyethylenimine

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

J H Jeong et al.
Journal of controlled release : official journal of the Controlled Release Society, 73(2-3), 391-399 (2001-08-23)
A series of linear poly(ethylenimine) (L-PEI) containing varying amounts of cationic charge density in its backbone was produced by controlled hydrolysis of poly(2-ethyl-2-oxazoline) (PEtOz) for using as a nonviral DNA transfection agent. The effects of cationic charge density and molecular
S R Winn et al.
Orthodontics & craniofacial research, 8(3), 183-190 (2005-07-19)
Bone repair strategies continue to be developed for alternatives to autografting, allogeneic implants of banked bone, and other bone substitutes. Efforts have included the delivery of potent growth and/or differentiation factors and the use of gene therapy. For bone regeneration
Issa Katime et al.
Applied spectroscopy, 57(7), 829-834 (2003-12-09)
This paper reports an FT-IR study of blends of poly(mono-n-alkyl itaconates) with poly(N,N-dimethylacrylamide) (PDMA) and poly(ethyloxazoline) (PEOX). Strong hydrogen bonding has been found, and both polybases have shown similar acceptor strengths. Derivative techniques show asymmetric profiles for the free carbonyl
Chau-Hui Wang et al.
Biomacromolecules, 4(6), 1487-1490 (2003-11-11)
A new series of cationic, thermo-sensitive, and biodegradable poly(L-lactide)-poly(2-ethyl-2-oxazoline)-poly(L-lactide) (PLLA-PEOz-PLLA) triblock copolymers were synthesized by ring-opening polymerization. With increasing molecular weight and crystallinity of hydrophobic PLLA blocks, the critical micellization concentrations (CMC) occurred at lower concentration. The PLLA-PEOz-PLLA aqueous solution
Chau-Hui Wang et al.
Journal of controlled release : official journal of the Controlled Release Society, 108(1), 140-149 (2005-09-27)
Polymeric micelles based on poly(L-lactide)-b-poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) (PLLA-PEOz-PLLA) ABA triblock copolymers were designed as intracellular drug carriers. The PLLA-PEOz-PLLA micelles adopt a "flower-like" arrangement with A-blocks at the core and a B-block on the shell under neutral condition. The deformation of the

Articles

The introduction of polymers into the biomedical field has opened new avenues in tissue engineering, implant design, biosensing, and drug delivery.

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service