Skip to Content
Merck
All Photos(3)

Documents

252980

Sigma-Aldrich

Copper(II) phthalocyanine

β-form, Dye content 90 %

Synonym(s):

CuPc, Phthalocyanine blue, Pigment Blue 15

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C32H16CuN8
CAS Number:
Molecular Weight:
576.07
Colour Index Number:
74160
Beilstein:
4121848
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

composition

Dye content, 90%

λmax

678 nm

OLED Device Performance

ITO/CuPc/NPD/Alq3/C60/Mg:Ag

  • Color: green
  • Max. Luminance: 17200 Cd/m2

ITO/CuPc/NPD/Alq3/LiF/Al
  • Color: red
  • Max. Luminance: 2000 Cd/m2
  • Turn-On Voltage: 7.5 V

ITO/CuPc/NPD/CBP:FIrpic (6%)/BAlq3/LiF/Al
  • Color: blue
  • Max. EQE: 4.5 %

OPV Device Performance

ITO/CuPc/PTCDA/In

  • Short-circuit current density (Jsc): 53.1 mA/cm2
  • Open-circuit voltage (Voc): 0.57 V
  • Fill Factor (FF): 0.61
  • Power Conversion Efficiency (PCE): 4.2 %

ITO/PEDOT:PSS/CuPc/C60/BCP/Al
  • Short-circuit current density (Jsc): 18.8 mA/cm2
  • Open-circuit voltage (Voc): 0.58 V
  • Fill Factor (FF): 0.52
  • Power Conversion Efficiency (PCE): 3.6 %

SMILES string

c1ccc2c(c1)C3=NC4=[N@@H]5C(=Nc6n7c(N=C8c9ccccc9C%10=[N@@H]8[Cu]57N3C2=N%10)c%11ccccc6%11)c%12ccccc4%12

InChI

1S/C32H16N8.Cu/c1-2-10-18-17(9-1)25-33-26(18)38-28-21-13-5-6-14-22(21)30(35-28)40-32-24-16-8-7-15-23(24)31(36-32)39-29-20-12-4-3-11-19(20)27(34-29)37-25;/h1-16H;/q-2;+2

InChI key

XCJYREBRNVKWGJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Longyun Hao et al.
Carbohydrate polymers, 90(4), 1420-1427 (2012-09-05)
Application of pigments in textile coloring has many advantages such as less water and energy consumption, less effluent load and higher efficiency, so the pigments are perfect alternatives to dyes for eco-friendly coloring. In this work, a stable anionic nanoscale
Richard Murdey et al.
The Journal of chemical physics, 134(23), 234702-234702 (2011-06-28)
The current flowing through a thin film of copper phthalocyanine vacuum deposited on a single crystal sapphire [0001] surface was measured during film growth from 0 to 93 nm. The results, expressed as conductance vs. nominal film thickness, indicate three
Masaya Hirade et al.
ACS applied materials & interfaces, 3(1), 80-83 (2011-01-05)
To enhance the performance of organic photovoltaic (OPV) cells, preparation of organic nanometer-sized pillar arrays is fascinating because a significantly large area of a donor/acceptor heterointerface having continuous conduction path to both anode and cathode electrodes can be realized. In
A Mugarza et al.
Physical review letters, 105(11), 115702-115702 (2010-09-28)
We study the electronic mechanisms underlying the induction and propagation of chirality in achiral molecules deposited on surfaces. Combined scanning tunneling microscopy and ab initio electronic structure calculations of Cu-phthalocyanines adsorbed on Ag(100) reveal the formation of chiral molecular orbitals
Jia Liu et al.
Journal of the American Chemical Society, 133(51), 21010-21015 (2011-11-24)
The bottom-up fabrication of surface hierarchical nanostructures is of great importance for the development of molecular nanostructures for chiral molecular recognition and enantioselective catalysis. Herein, we report the construction of a series of 2D chiral hierarchical structures by trinary molecular

Articles

While dye sensitization as the basis for color photography has been accepted for a very long time,1 attempts to use this principle for the conversion of solar light to electricity generally had resulted only in very low photocurrents, below 100 nA/cm

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service