Saltar al contenido
Merck
  • Metabolism of methyleugenol in liver microsomes and primary hepatocytes: pattern of metabolites, cytotoxicity, and DNA-adduct formation.

Metabolism of methyleugenol in liver microsomes and primary hepatocytes: pattern of metabolites, cytotoxicity, and DNA-adduct formation.

Toxicological sciences : an official journal of the Society of Toxicology (2012-05-23)
Alexander T Cartus, Kristin Herrmann, Lucas W Weishaupt, Karl-Heinz Merz, Wolfram Engst, Hansruedi Glatt, Dieter Schrenk
RESUMEN

Methyleugenol (1) is a constituent of many foods, in particular of herbal spices, and is used as flavoring agent in foodstuffs and as fragrance in cosmetics. 1 has been found to be carcinogenic in rodents, its metabolite, 1-hydroxymethyleugenol (2) acting as proximate DNA-binding carcinogen. We incubated 1 with liver microsomes of rat, bovine, and human origin. We found 2, 3-hydroxymethylisoeugenol (3), and 6-hydroxymethyleugenol (4) as major metabolites, and 1-oxomethyleugenol (5), 3-oxomethylisoeugenol (6), eugenol (9), chavibetol (11), and (RS)-2,3-dihydroxy-2,3-dihydromethyleugenol (7) as minor metabolites. Methyleugenol-2,3-epoxide (8), probably the precursor of 7, could not be detected. Incubations with synthetic metabolites were applied in order to uncover metabolic pathways. Incubations with primary rat hepatocytes revealed mainly nonconjugated 2 and conjugated 4, and minor amounts of partly conjugated 7 and conjugated 9 + 11. The "reactive metabolites" 3, 5, 6, and 8 were not detectable, possibly due to rapid reaction with cellular macromolecules. The highest cytotoxicity (resazurin reduction assay and lactate dehydrogenase leakage assay) was observed for the main metabolite 2 and its secondary metabolite 5 with EC(50) values of 50 and 10 µM, respectively. Deoxyadenosine or deoxyguanosine adducts were formed by incubating 1 or metabolites with rat hepatocytes. The rank order of adduct formation was 2 > 1 > 3 > 6, whereas 4, 5, and 8 were inactive. In conclusion, we present a virtually complete pattern of microsomal (rat, bovine, and human) and hepatocellular (rat) metabolites of 1 suggesting the formation of several reactive metabolites possibly involved in carcinogenicity, organ toxicity, and immune reactions.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Eugenol methyl ether, ≥98%, FCC
Sigma-Aldrich
Eugenol methyl ether, 99%
Supelco
Eugenol methyl ether, analytical standard