Saltar al contenido
Merck

Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa.

Neural regeneration research (2024-03-25)
Sam Enayati, Karen Chang, Anton Lennikov, Menglu Yang, Cherin Lee, Ajay Ashok, Farris Elzaridi, Christina Yen, Kasim Gunes, Jia Xie, Kin-Sang Cho, Tor Paaske Utheim, Dong Feng Chen
RESUMEN

JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-opsina azul, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Green/Red Cone Opsin Antibody, clone 7G8, clone 7G8, from mouse