Saltar al contenido
Merck

Large-Scale Topological Changes Restrain Malignant Progression in Colorectal Cancer.

Cell (2020-08-26)
Sarah E Johnstone, Alejandro Reyes, Yifeng Qi, Carmen Adriaens, Esmat Hegazi, Karin Pelka, Jonathan H Chen, Luli S Zou, Yotam Drier, Vivian Hecht, Noam Shoresh, Martin K Selig, Caleb A Lareau, Sowmya Iyer, Son C Nguyen, Eric F Joyce, Nir Hacohen, Rafael A Irizarry, Bin Zhang, Martin J Aryee, Bradley E Bernstein
RESUMEN

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Cloruro de amonio, ACS reagent, ≥99.5%
Sigma-Aldrich
Sacarosa, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Trietanolamina, ≥99.0% (GC)
Sigma-Aldrich
Formamida, BioReagent, ≥99.5% (GC), for molecular biology
Sigma-Aldrich
Formamida, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Dextran sulfate sodium salt from Leuconostoc spp., for molecular biology, average Mw >500,000 (dextran starting material), contains 0.5-2% phosphate buffer
Sigma-Aldrich
Acetic anhydride, ReagentPlus®, ≥99%
Sigma-Aldrich
3′-Sialyl-Lewis-X tetrasaccharide