Saltar al contenido
Merck
  • Adipocyte-derived Lysophosphatidylcholine Activates Adipocyte and Adipose Tissue Macrophage Nod-Like Receptor Protein 3 Inflammasomes Mediating Homocysteine-Induced Insulin Resistance.

Adipocyte-derived Lysophosphatidylcholine Activates Adipocyte and Adipose Tissue Macrophage Nod-Like Receptor Protein 3 Inflammasomes Mediating Homocysteine-Induced Insulin Resistance.

EBioMedicine (2018-05-08)
Song-Yang Zhang, Yong-Qiang Dong, Pengcheng Wang, Xingzhong Zhang, Yu Yan, Lulu Sun, Bo Liu, Dafang Zhang, Heng Zhang, Huiying Liu, Wei Kong, Gang Hu, Yatrik M Shah, Frank J Gonzalez, Xian Wang, Changtao Jiang
RESUMEN

The adipose Nod-like receptor protein 3 (NLRP3) inflammasome senses danger-associated molecular patterns (DAMPs) and initiates insulin resistance, but the mechanisms of adipose inflammasome activation remains elusive. In this study, Homocysteine (Hcy) is revealed to be a DAMP that activates adipocyte NLRP3 inflammasomes, participating in insulin resistance. Hcy-induced activation of NLRP3 inflammasomes were observed in both adipocytes and adipose tissue macrophages (ATMs) and mediated insulin resistance. Lysophosphatidylcholine (lyso-PC) acted as a second signal activator, mediating Hcy-induced adipocyte NLRP3 inflammasome activation. Hcy elevated adipocyte lyso-PC generation in a hypoxia-inducible factor 1 (HIF1)-phospholipase A2 group 16 (PLA2G16) axis-dependent manner. Lyso-PC derived from the Hcy-induced adipocyte also activated ATM NLRP3 inflammasomes in a paracrine manner. This study demonstrated that Hcy activates adipose NLRP3 inflammasomes in an adipocyte lyso-PC-dependent manner and highlights the importance of the adipocyte NLRP3 inflammasome in insulin resistance.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Lipopolysaccharides from Escherichia coli O111:B4, purified by phenol extraction
Avanti
16:0 Lyso PC, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine, chloroform