50972
2,6-Pyridinedicarboxylic acid concentrate
0.02 M C7H5NO4 in water (0.04N), suitable for ion chromatography, eluent concentrate
Synonym(s):
2,6-Pyridinedicarboxylic acid solution, Dipicolinic acid solution
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Empirical Formula (Hill Notation):
C7H5NO4
CAS Number:
Molecular Weight:
167.12
MDL number:
UNSPSC Code:
12000000
eCl@ss:
39151816
PubChem Substance ID:
NACRES:
NB.21
Recommended Products
description
anionic
Quality Level
concentration
0.02 M C7H5NO4 in water (0.04N)
technique(s)
ion chromatography: suitable
SMILES string
OC(=O)c1cccc(n1)C(O)=O
InChI
1S/C7H5NO4/c9-6(10)4-2-1-3-5(8-4)7(11)12/h1-3H,(H,9,10)(H,11,12)
InChI key
WJJMNDUMQPNECX-UHFFFAOYSA-N
General description
This eluent concentrate for ion chromatography is determined by potentiometric titration. Content and expiry date can be found on the certificate.
Application
Linkage
Visit the IC Portal to learn more
Preparation Note
Prepared with 2,6-pyridinecarboxylic acid and high purity water (18.2 MΩ, 0.2 μm filtered)
related product
Product No.
Description
Pricing
Storage Class Code
10 - Combustible liquids
WGK
WGK 2
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Chao Xu et al.
Inorganic chemistry, 52(5), 2750-2756 (2013-02-21)
Complexation of UO2(2+) with dipicolinic acid (DPA) has been investigated in 0.1 M NaClO4. The stability constants (log β1 and log β2) for two successive complexes, UO2L and UO2L2(2-) where L(2-) stands for the deprotonated dipicolinate anion, were determined to
C C J van Melis et al.
International journal of food microbiology, 160(2), 124-130 (2012-11-28)
In this study, the impact of a range of organic acids and structurally similar alcohols with three to six carbon backbones and increasing lipophilic character, were tested on the germination behavior of B. cereus ATCC 14579 spores. This approach allowed
P Zhang et al.
Journal of applied microbiology, 112(3), 526-536 (2012-01-04)
To analyse the dynamic germination of hundreds of individual superdormant (SD) Bacillus subtilis spores. Germination of hundreds of individual SD B. subtilis spores with various germinants and under different conditions was followed by multifocus Raman microspectroscopy and differential interference contrast
Lingbo Kong et al.
Journal of biomedical optics, 19(1), 011003-011003 (2013-07-12)
The dynamics of bacterial spore germination were successfully observed using a fast Raman imaging system, in combination with real-time phase contrast microscopy. By using a multifocus scan scheme, the spontaneous Raman-scattering imaging acquisition speed was increased to ~30 s per
Dongeun Yong et al.
Journal of clinical microbiology, 50(10), 3227-3232 (2012-07-28)
Accurate detection of metallo-β-lactamase (MBL)-producing Pseudomonas spp. and Acinetobacter spp. became very important with the increasing prevalence of carbapenem-nonsusceptible clinical isolates. The performance of phenotypic MBL detection methods may depend on the types of MBL and the characteristics of the
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service