- A role for rho-kinase in rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor.
A role for rho-kinase in rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor.
Stimulation of phospholipase D (PLD) by membrane receptors is now recognized as a major signal transduction pathway involved in diverse cellular functions. Rho proteins control receptor signaling to PLD, and these GTPases have been shown to directly stimulate purified recombinant PLD1 enzymes in vitro. Here we report that stimulation of PLD activity, measured in the presence of phosphatidylinositol 4,5-bisphosphate, by RhoA in membranes of HEK-293 cells expressing the m3 muscarinic acetylcholine receptor (mAChR) is phosphorylation-dependent. Therefore, the possible involvement of the RhoA-stimulated serine/threonine kinase, Rho-kinase, was investigated. Overexpression of Rho-kinase and constitutively active Rho-kinase (Rho-kinase-CAT) but not of kinase-deficient Rho-kinase-CAT markedly increased m3 mAChR-mediated but not protein kinase C-mediated PLD stimulation, similar to overexpression of RhoA. Expression of the Rho-inactivating C3 transferase abrogated the stimulatory effect of wild-type Rho-kinase, but not of Rho-kinase-CAT. Recombinant Rho-kinase-CAT mimicked the phosphorylation-dependent PLD stimulation by RhoA in HEK-293 cell membranes. Finally, the Rho-kinase inhibitor HA-1077 largely inhibited RhoA-induced PLD stimulation in membranes as well as PLD stimulation by the m3 mAChR but not by protein kinase C in intact HEK-293 cells. We conclude that Rho-kinase is involved in Rho-dependent PLD stimulation by the G protein-coupled m3 mAChR in HEK-293 cells. Thus, our findings identify Rho-kinase as a novel player in the receptor-controlled PLD signaling pathway.