Passa al contenuto
Merck

Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation.

International journal of pharmaceutics (2013-07-09)
May S Freag, Yosra S R Elnaggar, Ossama Y Abdallah
ABSTRACT

Scanty solubility and permeability of diosmin (DSN) are perpetrators for its poor oral absorption and high inter-subject variation. This article investigated the potential of novel DSN nanosuspensions to improve drug delivery characteristics. Bottom-up nanoprecipitation technique has been employed for nanosuspension development. Variables optimized encompassed polymeric stabilizer type, DSN: stabilizer ratio, excess stabilizer removal, spray drying, and mannitol incorporation. In vitro characterization included particle size (PS), infrared spectroscopy (IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and dissolution profile. Ex vivo permeation was assessed in rats using non-everted sac technique and HPLC. Optimal DSN nanosuspension (DSN:hydroxypropylmethyl cellulose HPMC 2:1) was prepared with acid base neutralization technique. The formula exhibited the lowest PS (336 nm) with 99.9% drug loading and enhanced reconstitution properties after mannitol incorporation. SEM and TEM revealed discrete, oval drug nanocrystals with higher surface coverage with HPMC compared to MC. DSN nanosuspension demonstrated a significant enhancement in DSN dissolution (100% dissolved) compared to crude drug (51%). Permeation studies revealed 89% DSN permeated from the nanosuspension after 120 min compared to non-detected amounts from drug suspension. Conclusively, novel DSN nanosuspension could successful improve its dissolution and permeation characteristics with promising consequences of better drug delivery.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Methyl cellulose, viscosity: 4,000 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
Methyl cellulose, viscosity: 1,500 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~10,000
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~86,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~120,000
Sigma-Aldrich
Methyl cellulose, viscosity: 25 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~90,000
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% methoxyl basis
Sigma-Aldrich
Methyl cellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
Methyl cellulose, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Sigma-Aldrich
Methyl cellulose, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methyl cellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Supelco
Diosmin, analytical standard
Sigma-Aldrich
Methyl cellulose, tested according to Ph. Eur.