Passa al contenuto
Merck
  • A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.

A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.

PLoS genetics (2013-01-10)
Eric Röttinger, Paul Dahlin, Mark Q Martindale
ABSTRACT

Understanding the functional relationship between intracellular factors and extracellular signals is required for reconstructing gene regulatory networks (GRN) involved in complex biological processes. One of the best-studied bilaterian GRNs describes endomesoderm specification and predicts that both mesoderm and endoderm arose from a common GRN early in animal evolution. Compelling molecular, genomic, developmental, and evolutionary evidence supports the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian ancestor is derived from the same evolutionary precursor of both endodermal and mesodermal germ layers in all other triploblastic bilaterian animals. We have begun to establish the framework of a provisional cnidarian "endomesodermal" gene regulatory network in the sea anemone, Nematostella vectensis, by using a genome-wide microarray analysis on embryos in which the canonical Wnt/ß-catenin pathway was ectopically targeted for activation by two distinct pharmaceutical agents (lithium chloride and 1-azakenpaullone) to identify potential targets of endomesoderm specification. We characterized 51 endomesodermally expressed transcription factors and signaling molecule genes (including 18 newly identified) with fine-scale temporal (qPCR) and spatial (in situ) analysis to define distinct co-expression domains within the animal plate of the embryo and clustered genes based on their earliest zygotic expression. Finally, we determined the input of the canonical Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt signaling is required to pattern both the future endomesodermal and ectodermal domains prior to gastrulation, and that both BMP and FGF (but not Notch) pathways play important roles in germ layer specification in this animal. We show both evolutionary conserved as well as profound differences in endomesodermal GRN structure compared to bilaterians that may provide fundamental insight into how GRN subcircuits have been adopted, rewired, or co-opted in various animal lineages that give rise to specialized endomesodermal cell types.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Lithium chloride, ACS reagent, ≥99%
Roche
Frammenti Fab anti-digossigenina-AP, from sheep
Sigma-Aldrich
Lithium chloride, for molecular biology, ≥99%
Sigma-Aldrich
Lithium chloride, powder, ≥99.98% trace metals basis
Sigma-Aldrich
Lithium chloride, ReagentPlus®, 99%
Sigma-Aldrich
Lithium chloride solution, 8 M, for molecular biology, ≥99%
Sigma-Aldrich
Lithium chloride, BioUltra, for molecular biology, anhydrous, ≥99.0% (AT)
Supelco
Lithium chloride solution, 1 M in ethanol
Sigma-Aldrich
Lithium chloride, AnhydroBeads, −10 mesh, 99.998% trace metals basis
Roche
Digoxigenin-11-dUTP, alkali-labile, =85% (HPLC), solution, pkg of 25 μL (11573152910 [1 mM]), pkg of 125 μL (11573179910 [1 mM]]])
Sigma-Aldrich
Lithium chloride, puriss. p.a., anhydrous, ≥99.0% (AT)
Sigma-Aldrich
Lithium chloride, BioXtra, ≥99.0% (titration)
Sigma-Aldrich
Lithium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis