Passa al contenuto
Merck

Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques.

The journal of physical chemistry. B (2006-09-08)
Francesca Palombo, Paola Sassi, Marco Paolantoni, Assunta Morresi, Rosario Sergio Cataliotti
ABSTRACT

Liquid 1-octanol and 2-octanol have been investigated by infrared (IR), Raman, and Brillouin experiments in the 10-90 degrees C temperature range. Self-association properties of the neat liquids are described in terms of a three-state model in which OH oscillators differently implicated in the formation of H-bonds are considered. The results are in quantitative agreement with recent computational studies for 1-octanol. The H-bond probability is obtained by Raman data, and a stochastic model of H-bonded chains gives a consistent picture of the self-association characteristics. Average values of hydrogen bond enthalpy and entropy are evaluated. The H-bond formation enthalpy is ca. -22 kJ/mol and is slightly dependent on the structural isomerism. The different degree of self-association for the two octanols is attributed to entropic factors. The more shielded 2-isomer forms larger fractions of smaller, less cooperative, and more ordered clusters, likely corresponding to cyclic structures. Signatures of a different cluster organization are also evidenced by comparing the H-bond energy dispersion (HBED) of OH stretching IR bands. A limiting cooperative H-bond enthalpy value of 27 kJ/mol is found. It is also proposed that the different H-bonding capabilities may modulate the extent of interaggregate hydrocarbon interactions, which is important in explaining the differences in molar volume, compressibility, and vaporization enthalpy for the two isomers.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
2-Octanol, 97%
Sigma-Aldrich
2-Octanol, ≥97%, FG
Sigma-Aldrich
(±)-2-Octanol, ≥96.0% (GC)
Sigma-Aldrich
(S)-(+)-2-Octanol, 99%
Sigma-Aldrich
(±)-2-Octanol, ReagentPlus®, ≥99.5% (GC)