Passa al contenuto
Merck

A Novel Resveratrol-Induced Pathway Increases Neuron-Derived Cell Resilience against Oxidative Stress.

International journal of molecular sciences (2023-03-30)
Patrizio Cracco, Emiliano Montalesi, Martina Parente, Manuela Cipolletti, Giovanna Iucci, Chiara Battocchio, Iole Venditti, Marco Fiocchetti, Maria Marino
ABSTRACT

A promising therapeutic strategy to delay and/or prevent the onset of neurodegenerative diseases (NDs) could be to restore neuroprotective pathways physiologically triggered by neurons against stress injury. Recently, we identified the accumulation of neuroglobin (NGB) in neuronal cells, induced by the 17β-estradiol (E2)/estrogen receptor β (ERβ) axis, as a protective response that increases mitochondria functionality and prevents the activation of apoptosis, increasing neuron resilience against oxidative stress. Here, we would verify if resveratrol (Res), an ERβ ligand, could reactivate NGB accumulation and its protective effects against oxidative stress in neuronal-derived cells (i.e., SH-SY5Y cells). Our results demonstrate that ERβ/NGB is a novel pathway triggered by low Res concentrations that lead to rapid and persistent NGB accumulation in the cytosol and in mitochondria, where the protein contributes to reducing the apoptotic death induced by hydrogen peroxide (H2O2). Intriguingly, Res conjugation with gold nanoparticles increases the stilbene efficacy in enhancing neuron resilience against oxidative stress. As a whole, ERβ/NGB axis regulation is a novel mechanism triggered by low concentration of Res to regulate, specifically, the neuronal cell resilience against oxidative stress reducing the triggering of the apoptotic cascade.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anti-Neuroglobin Antibody, clone 6G1.1, clone 6G1.1, from mouse