Passa al contenuto
Merck
Tutte le immagini(1)

Documenti fondamentali

918741

Sigma-Aldrich

TissueFab® bioink 

(Gel)ma -VIS/405nm, low endotoxin

Sinonimo/i:

Bioink, GelMA, Gelatin methacrylamide, Gelatin methacrylate, Gelatin methacryloyl

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali

Scegli un formato

10 ML
CHF 427.00

CHF 427.00


Check Cart for Availability

Richiedi un ordine bulk

Scegli un formato

Cambia visualizzazione
10 ML
CHF 427.00

About This Item

Codice UNSPSC:
12352201
NACRES:
NA.23

CHF 427.00


Check Cart for Availability

Richiedi un ordine bulk

Livello qualitativo

Descrizione

suitable for 3D bioprinting applications
with LAP photoinitiator

Sterilità

sterile-filtered

Stato

viscous liquid

Impurezze

≤5 CFU/g Bioburden (Fungal)
≤5 CFU/g Bioburden (Total Aerobic)
<50 EU/mL Endotoxin

Colore

colorless to pale yellow

Dimensione particelle

0.2 μm

pH

6.5-7.5

applicazioni

3D bioprinting

Temperatura di conservazione

2-8°C

Cerchi prodotti simili? Visita Guida al confronto tra prodotti

Applicazioni

TissueFab® GelMA-Vis-LAP bioink is a gelatin methacryloyl (GelMA) based bioink for 3D bioprinting applications. LAP is used as the photoinitiator, which allows blue light photocrosslinking of the printed structure. The formulation is optimized for high printing fidelity and cell viability. The low endotoxin level of this product is lower than 50 EU/mL.

Gelatin methacryloyl (GelMA) is a polymerizable hydrogel material derived from natural extracellular matrix (ECM) components. Due to its low cost, abundance, and retention of natural cell binding motifs, gelatin has become a highly sought material for tissue engineering applications. The addition of photocrosslinkable methacrylamide functional groups in GelMA allows the synthesis of biocompatible, biodegradable, and non-immunogenic hydrogels that are stable in biologically relevant conditions and promote cell adhesion, spreading, and proliferation.

Note legali

TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

Codice della classe di stoccaggio

10 - Combustible liquids

Classe di pericolosità dell'acqua (WGK)

WGK 3


Scegli una delle versioni più recenti:

Certificati d'analisi (COA)

Lot/Batch Number

Non trovi la versione di tuo interesse?

Se hai bisogno di una versione specifica, puoi cercare il certificato tramite il numero di lotto.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

Y Shi et al.
Biomedical materials (Bristol, England), 13(3), 035008-035008 (2018-01-09)
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper
B Duan et al.
Acta biomaterialia, 10(5), 1836-1846 (2013-12-18)
Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs
Wanjun Liu et al.
Biofabrication, 10(2), 024102-024102 (2017-11-28)
Bioinks with shear-thinning/rapid solidification properties and strong mechanics are usually needed for the bioprinting of three-dimensional (3D) cell-laden constructs. As such, it remains challenging to generate soft constructs from bioinks at low concentrations that are favorable for cellular activities. Herein
P Selcan Gungor-Ozkerim et al.
Biomaterials science, 6(5), 915-946 (2018-03-02)
Bioprinting is an emerging technology with various applications in making functional tissue constructs to replace injured or diseased tissues. It is a relatively new approach that provides high reproducibility and precise control over the fabricated constructs in an automated manner
Janet R Xavier et al.
ACS nano, 9(3), 3109-3118 (2015-02-13)
Despite bone's impressive ability to heal after traumatic injuries and fractures, a significant need still exists for developing strategies to promote healing of nonunion defects. To address this issue, we developed collagen-based hydrogels containing two-dimensional nanosilicates. Nanosilicates are ultrathin nanomaterials

Articoli

Bioinks enable 3D bioprinting of tissue constructs for drug screening and transplantation; select suitable bioinks for specific tissue engineering.

Learn how 3D bioprinting is revolutionizing drug discovery with highly-controllable cell co-culture, printable biomaterials, and its potential to simulate tissues and organs. This review paper also compares 3D bioprinting to other advanced biomimetic techniques such as organoids and organ chips.

Questions

  1. Are there any GelMA products suitable for DLP 3D printing, particularly those that are part of the TissueFab line?

    1 answer
    1. Yes, any of GelMA based bioinks, such as 918741, can be used for DLP 3D printing, but some adjustments are needed. The DLP printer should have a heating function, or the bioink needs to be heated before printing to make the GelMA a low viscosity liquid. Additionally, a photo-absorber needs to be added to the bioink to scavenge scattered light.

      Helpful?

Reviews

No rating value

Active Filters

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.