Accéder au contenu
Merck
  • Soluble Phenolic Compounds in Different Cultivars of Red Clover and Alfalfa, and their Implication for Protection against Proteolysis and Ammonia Production in Ruminants.

Soluble Phenolic Compounds in Different Cultivars of Red Clover and Alfalfa, and their Implication for Protection against Proteolysis and Ammonia Production in Ruminants.

Natural product communications (2015-09-29)
Isabelle A Kagan, Ben M Goff, Michael D Flythe
RÉSUMÉ

Red clover (Trifolium pratense) contains soluble phenolic compounds with roles in inhibiting proteolysis and ammonia production. Alfalfa (Medicago sativa) has been found to have a low phenolic content, but few alfalfa and red clover cultivars have been compared for phenolic content. Total soluble phenolics were quantified by a Folin-Ciocalteu colorimetric assay in nine red clover and 27 alfalfa cultivars. Mean total phenolic contents of red clover and alfalfa were 36.5 ± 4.3 mg/gdw and 15.8 ± 1.4 mg/gdw, respectively, with the greater standard deviation of red clover possibly indicating more diversity in phenolic content. Because different phenolic standards had different response factors in the colorimetric assay, the red clover and 11 alfalfa cultivars were analyzed by HPLC to determine if the differences in total soluble phenolics between genera reflected differences in the amounts of phenolics or in the classes of phenolics responding to the colorimetric assay. Two red clover cultivars differed in total phenolics and phaselic acid. Alfalfa produced different phenolic compounds from red clover, at lower concentrations. Extracts of two red clover cultivars were separated by thin-layer chromatography (TLC), and the bands were assayed for activity against Clostridium sticklandii, a bovine ruminal hyper ammonia-producing bacterium (HAB). Only biochanin A had anti-HAB activity. Inhibitory amounts indicated that five red clover cultivars could be suitable sources of anti-HAB activity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide chlorhydrique solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acide chlorhydrique, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Méthanol, anhydrous, 99.8%
Supelco
Acide chlorhydrique solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Acétate d'éthyle, anhydrous, 99.8%
Sigma-Aldrich
Éther diéthylique, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Acide acétique, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Éther diéthylique
Sigma-Aldrich
Acide acétique, ≥99.5%, FCC, FG
Sigma-Aldrich
Acide acétique, natural, ≥99.5%, FG
Sigma-Aldrich
Acide chlorhydrique solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Chlorure d'hydrogène solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acétate d'éthyle, ≥99%, FCC, FG
Sigma-Aldrich
Acide chlorhydrique solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Acétate d'éthyle
Sigma-Aldrich
Acétate d'éthyle, natural, ≥99%, FCC, FG
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Acétate d'éthyle
Sigma-Aldrich
Acétate d'éthyle, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Méthanol, NMR reference standard
Sigma-Aldrich
Formononetin, ≥99.0% (TLC)
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Ononin, ≥99.0% (TLC)