Accéder au contenu
Merck

Extracellular localization of catalase is associated with the transformed state of malignant cells.

Biological chemistry (2015-07-04)
Britta Böhm, Sonja Heinzelmann, Manfred Motz, Georg Bauer
RÉSUMÉ

Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Chlorure d'hydrogène solution, 4.0 M in dioxane
Sigma-Aldrich
Acide chlorhydrique solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acide chlorhydrique, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Acide chlorhydrique, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Acide chlorhydrique, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chlorure d'hydrogène solution, 2.0 M in diethyl ether
Sigma-Aldrich
Acide chlorhydrique, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Taurine, ≥99%
Supelco
Acide chlorhydrique solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Manganese(II) chloride, powder and chunks, ≥99% trace metals basis
Sigma-Aldrich
Chlorure d'hydrogène solution, 1.0 M in diethyl ether
Sigma-Aldrich
Taurine, suitable for cell culture, meets USP testing specifications
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Acide chlorhydrique, puriss., 24.5-26.0%
Sigma-Aldrich
Acide chlorhydrique solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Chlorure d'hydrogène solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acide chlorhydrique solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Manganese(II) chloride, beads, 98%
Sigma-Aldrich
Manganese(II) chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Chlorure d'hydrogène solution, 1.0 M in acetic acid
Sigma-Aldrich
Taurine, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Fluorure de 4-(2-aminoéthyl)-benzènesulfonyle hydrochloride, ≥97.0% (HPLC)
SAFC
Taurine
Sigma-Aldrich
Taurine, ≥98%, FG
Sigma-Aldrich
Manganese(II) chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis