Accéder au contenu
Merck
  • Vascular endothelial growth factor (VEGF) regulation by hypoxia inducible factor-1 alpha (HIF1A) starts and peaks during endometrial breakdown, not repair, in a mouse menstrual-like model.

Vascular endothelial growth factor (VEGF) regulation by hypoxia inducible factor-1 alpha (HIF1A) starts and peaks during endometrial breakdown, not repair, in a mouse menstrual-like model.

Human reproduction (Oxford, England) (2015-06-27)
Xihua Chen, Jianbing Liu, Bin He, Yunfeng Li, Shuyan Liu, Bin Wu, Shufang Wang, Shucheng Zhang, Xiangbo Xu, Jiedong Wang
RÉSUMÉ

How is vascular endothelial growth factor (VEGF) expression regulated by hypoxia inducible factor 1 alpha (HIF1A) during menstruation? After progesterone (P4) withdrawal, HIF1A was activated and it directly up-regulated VEGF mRNA expression and this regulation was the highest during endometrium breakdown in the mouse menstrual-like model. VEGF, an important angiogenic factor, is known to be essential for endometrial repair, particularly in angiogenesis and re-epithelialization. However, its upstream regulation has not been fully clarified. HIF1 is the first transcription factor response to hypoxia and is closely associated with angiogenesis; it is also an upstream regulator of VEGF mRNA. We investigated the changes in the expression of HIF1A and VEGF after P4 withdrawal and after HIF1A inhibition. The total number of mice used was 62. The treatment duration in the mouse menstrual-like model was 8 days. The mouse menstrual-like model and mouse and human decidual endometrial stromal cells were established to mimic menstruation. Protein and mRNA expressions of HIF1A and VEGF were investigated by immunohistochemistry, Western blot and quantitative PCR. The direct interaction between HIF1A and the Vegf promoter was also investigated by chromatin immunoprecipitation. HIF1A inhibition in vivo and in vitro was achieved by administration of an HIF1A inhibitor and by siRNA knockdown, respectively. HIF1A was translocated to the nucleus from 8 to 16 h after P4 withdrawal, while VEGF mRNA expression was the highest at 12 h. HIF1A directly bound to Vegf promoter during endometrial breakdown, which peaked at 12 h. HIF1A inhibition suppressed VEGF mRNA and protein expression in the mouse menstrual-like model and decidualized stromal cells. Inhibition of HIF1A also suppressed endometrial breakdown. Although HIF1A regulation of VEGF mRNA was confirmed in the mouse menstrual-like model and decidual endometrium stromal cells, the functional regulation of VEGF protein was not further determined. Here, we report that the functional regulation of VEGF was complicate in menstruation. We also report that HIF1A plays a key role in endometrial breakdown. The National Nature Science Foundation of China (No. 30901608), the National Basic Research Program of China (2010CB530403) and the National Science and Technology Support Program (No. 2012BAI32B05). The authors have no conflicts of interest to disclose. This study is not a clinical trial.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Diméthylsulfoxyde, anhydrous, ≥99.9%
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
β-Estradiol, BioReagent, powder, suitable for cell culture
Sigma-Aldrich
Phénol solution, BioReagent, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, for molecular biology
Sigma-Aldrich
β-Estradiol, ≥98%
Sigma-Aldrich
Diméthylsulfoxyde, BioUltra, for molecular biology, ≥99.5% (GC)
SAFC
BIS-TRIS
Sigma-Aldrich
Phénol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Phénol, ≥99%
Sigma-Aldrich
β-Estradiol, powder, γ-irradiated, suitable for cell culture
Sigma-Aldrich
Diméthylsulfoxyde, PCR Reagent
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Phénol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Propylene glycol monomethyl ether acetate, ReagentPlus®, ≥99.5%
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
Phénol, natural, 97%, FG
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
Phénol solution, ≥89.0%
Sigma-Aldrich
Phénol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Sigma-Aldrich
Phénol, for molecular biology
Sigma-Aldrich
β-Estradiol, analytical standard
Sigma-Aldrich
Diméthylsulfoxyde, meets EP testing specifications, meets USP testing specifications
SAFC
BIS-TRIS
Sigma-Aldrich
Phénol, BioXtra, ≥99.5% (GC)