Accéder au contenu
Merck

TnBP⁄Triton X-45 treatment of plasma for transfusion efficiently inactivates hepatitis C virus.

PloS one (2015-02-07)
Ming-Li Chou, Thierry Burnouf, Shun-Pang Chang, Ting-Chun Hung, Chun-Ching Lin, Christopher D Richardson, Liang-Tzung Lin
RÉSUMÉ

Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, ACS reagent, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Diméthylsulfoxyde, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Diméthylsulfoxyde, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Diméthylsulfoxyde, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Diméthylsulfoxyde, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Diméthylsulfoxyde, PCR Reagent
Sigma-Aldrich
Phosphate de tributyle, ≥99%
Sigma-Aldrich
Diméthylsulfoxyde, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Diméthylsulfoxyde, anhydrous, ≥99.9%
Sigma-Aldrich
Phosphate de tributyle, 97%
USP
Diméthylsulfoxyde, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Triton X-45
Sigma-Aldrich
Diméthylsulfoxyde, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Supelco
Diméthylsulfoxyde, analytical standard
Sigma-Aldrich
Phosphate de tributyle, puriss., ≥99.0% (GC)
Supelco
Phosphate de tributyle, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Diméthylsulfoxyde, for inorganic trace analysis, ≥99.99995% (metals basis)
Diméthylsulfoxyde, European Pharmacopoeia (EP) Reference Standard
Supelco
Phosphate de tributyle, for extraction analysis, ≥99.0% (GC)
Phosphate de tributyle, European Pharmacopoeia (EP) Reference Standard