Accéder au contenu
Merck

Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

Journal of chromatography. A (2014-12-30)
Stewart R Dods, Oliver Hardick, Bob Stevens, Daniel G Bracewell
RÉSUMÉ

Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5 and 10MPa showed increases of 30%, 110% and 110%, respectively, for both functionalisations. The data presented show that capacity and mechanical strength can be balanced through compression after electrospinning and is particular to different functionalisations. This trade-off is critical to the development of nanofibre adsorbents into different packing configurations for application and scale up in bioseparation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acétone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
N,N-Diméthylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Diméthylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acétone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hypochlorite de sodium solution, reagent grade, available chlorine 4.00-4.99 %
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Acétone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Hypochlorite de sodium solution, reagent grade, available chlorine 10-15 %
Sigma-Aldrich
Acide acétique, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acide acétique solution, suitable for HPLC
Sigma-Aldrich
N,N-Diméthylformamide, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acide acétique, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
TEMPO, 98%
Sigma-Aldrich
Acétone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acide acétique, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acétone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
N,N-Diméthylformamide, anhydrous, 99.8%
Sigma-Aldrich
Éthanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
N,N-Diméthylformamide, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium chlorite, technical grade, 80%
Sigma-Aldrich
N,N-Diméthylformamide, for molecular biology, ≥99%
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Sodium chlorite, puriss. p.a., 80% (RT)
Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Éthanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)